
Limits of Fisher–KPP equations, branching Brownian
motion and a spatial Λ-Fleming–Viot model for

population expansion

Patrick Kidger

April 15, 2018

Abstract

We introduce a possible spatial Λ-Fleming–Viot model for modelling population
expansion, and prove that under various scaling limits it converges to the Fisher–
KPP equation, the heat equation, or a particular parabolic equation: the latter two
thus rule out certain scaling limits as unphysical. Our proof will exploit a dual-
ity with a system of branching and coalescing random walkers which approximate
branching Brownian motion.
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1 Introduction

The spatial Λ-Fleming–Viot model provides a way to model genetic evolution in a spatial
continuum, and has seen great success in population genetics in modelling the interaction
between two different genotypes, see for example [EFP17], [BEV13] or [EVY14]. The
question arises as to whether it can be applied to modelling population expansion, in
which a species expands uncontested into a new environment; we might hope to model
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this scenario in a similar manner to genic selection, in which a great advantage is given
to one genotype (representing the population) over its rival (representing empty space).

We begin by introducing our spatial Λ-Fleming–Viot model for expansion, and prove
that it exhibits a duality with a branching and coalescing jump process. Under ap-
propriate scaling limits, this dual process is shown to approximate branching Brownian
motion, and so the Skorokhod–McKean representation then provides a characterisation
of the behaviour of the original spatial Λ-Fleming–Viot process in terms of a Fisher–KPP
equation. This in turn allows for further analysis of more complicated scaling limits via
parabolic PDE theory. Our main results are then Theorem 4.4, Theorem 6.2 and Theo-
rem 6.5, describing the simple scaling limit and then two more complicated scaling limits
respectively.

Given that we are trying to give a large advantage to the expanding population,
then either of the more complicated scaling limits may (before knowing their limiting
equation) seem physically plausible, as both give an infinitely large advantage to the
expanding population over its ‘competitor’, empty space. In both cases, however, the
limiting equation is clearly unphysical, each for different reasons. The simpler scaling
limit remains a plausible option. Mathematically the investigation of all three scaling
limits is of interest in its own right.

2 Definitions and Duality

We wish to model the uncontested expansion of a species into a new environment. This
is represented by a function w, for which wt(x) represents the population density of
the species at a point (t, x) in time and space. The population density evolves over time
according to neutral and expansive events. The former represents the random fluctuations
of birth and death in the species, whilst the latter drives the expansion of the species,
with a parameter k specifying how fecund the species is: we expect to choose a large
k to model the fact that the species may expand without opposition. The function w
maps into [0, 1]. Thus we are implicitly assuming that there is an upper bound on the
population density, and that furthermore this bound is homogeneous in space and time.

Definition 2.1 (Spatial Λ-Fleming–Viot for expansion (SLFVE)). Let d ∈ N. Let
u ∈ (0, 1), which we shall call the impact parameter. Let s ∈ (0, 1), the reproduction
parameter 1. Let R > 0, the event radius. Let k ∈ {2, 3, 4, . . .}, the fecundity parameter.
Let γ1 > 0, γ2 > 0. Let Π be a Poisson point process on [0,∞) × Rd with intensity
measure γ1dt⊗ γ2dx.

Then the SLFVE driven by Π with parameters (u, s, R, k) is the process w = (wt)t>0,
taking values in the space of functions Rd → [0, 1], with dynamics given as follows:

For each (t, x) ∈ Π, a reproduction event occurs:

(i) With probability 1− s, the reproduction event is neutral, meaning that we pick an
offspring location z ∈ B(x,R) uniformly at random, let α ∼ Bernoulli(wt−(z)), and
then set, for each y ∈ B(x,R),

wt(y) = (1− u)wt−(y) + uα.

1The reproduction parameter is equivalent to the ‘selection coefficient’ between two genic types in the
usual population genetics literature.
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(ii) With complementary probability s, the reproduction event is expansive, meaning
that for i ∈ {1, . . . , k} we pick offspring locations zi ∈ B(x,R) uniformly at random
and independent of each other. Let αi ∼ Bernoulli(wt−(zi)) independent of each
other, and then set, for each y ∈ B(x,R),

wt(y) = (1− u)wt−(y) + umax{αi | i ∈ {1, . . . , k}}.

We shall use the notation ‘Ep0 ’, for some function p0 : Rd → [0, 1], to denote that w0 = p0.
The ball B(x,R) is referred to as the affected region of a reproduction event.
Note that biologically speaking, the offspring locations actually make sense as the

positions of parent individuals. Nonetheless we shall use this terminology for consistency
with the dual process, for which such notions are reversed, see Remark 2.5.

Remark 2.2. Whilst we have fixed the impact parameter u and event radius R, we expect
that we may in fact take these to be random, under certain conditions; we have simply
chosen then constant for simplicity, see for example [EVY14] or [EFP17].

Furthermore we expect that we could take the fecundity parameter k to be random
as well, subject to certain boundedness assumptions to ensure that the following analysis
still holds. (That the maximum value of k is bounded would suffice.)

Having made this definition, we see that we might hope to model population expansion
by taking k very large; indeed, letting k go to infinity. This would mean that every time
an expansive event’s affected region overlaps some region of the population then the
population will expand out into the entirety of the affected region. We investigate this
possibility in Section 6, and as previously remarked, discover that the results are in fact
unphysical.

Moving on, we wish to find a dual process to the SLFVE. The following informal
argument motivates its construction. Consider picking an individual at some point (t, x)
in time and space. In some sense, with probability wt(x) the individual is alive, and
with probability 1− wt(x) it is dead. In order to determine the value of wt(x), we trace
back in time until the most recent reproduction event whose affected region contained
x. With probability u the individual has its state of alive-or-dead determined by that
reproduction event. (With complementary probability 1− u, we ignore this reproduction
event and trace back to the next most recent reproduction event that covered the location
x.) If the reproduction event was neutral then the alive-or-dead state of the individual is
determined by the offspring location, whose location we pick uniformly at random from
the affected region of the reproduction event. If the reproduction event is expansive then
the alive-or-dead state of the individual is determined by the k offspring locations, for
whom similarly we pick locations uniformly at random within the affected region of the
reproduction event. For an individual at each of these offspring location(s), we repeat
our above procedure, tracing backwards in time, until eventually we reach time zero.
The alive-or-dead state of each of the individuals is now determined by sampling from
some initial distribution p0, which now propagates forwards in time to determine the
alive-or-dead state of our initially considered individual.

Definition 2.3 (SLFVE dual). Let d ∈ N. Let u ∈ (0, 1), s ∈ (0, 1), R > 0, k ∈
{2, 3, 4, . . .}, and Π be a Poisson point process on [0,∞)×Rd, as in the definition of the
SLFVE.
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Then the SLFVE dual driven by Π with parameters (u, s, R, k) is the
⋃
n∈N

(Rd × {0, 1})n-

valued process Ξ = (Ξt)t>0 of individuals, each of which may be ‘marked’2, defined as
follows.

We write Ξt = (ξ1
t , . . . , ξ

Nt
t ) for the locations of the random number Nt ∈ N of individ-

uals at time t. We suppress in our notation whether or not the individuals are marked,
and so we shall also refer to an individual by its location.

At time zero, independent of all else, each individual ξ1
0 , . . . , ξ

N0
0 is marked with prob-

ability u. We shall usually consider the process as starting with a single individual, in
which case ‘Ex’ denotes that the single initial individual ξ1

0 has location x ∈ Rd.
The dynamics are as follows. For each (t, x) ∈ Π, a reproduction event occurs:

(i) (a) With probability 1 − s, the reproduction event is neutral, meaning that if
at least one individual in B(x,R) is marked, then all marked individuals in
B(x,R) are replaced by a single offspring individual, whose location z is drawn
uniformly at random from B(x,R).

(b) With complementary probability s, the reproduction event is expansive, mean-
ing that if at least one individual in B(x,R) is marked, then all marked in-
dividuals in B(x,R) are replaced by k offspring individuals, whose locations
z1, . . . , zk are drawn uniformly at random from B(x,R), conditionally indepen-
dent of each other.

(ii) After this, regardless of whether the reproduction event is neutral or expansive,
then all individuals in B(x,R) (including both any unmarked individuals who did
not take part, and any new offspring individuals), are marked, independently, with
probability u.

Definition 2.4. We establish some terminology referring to this dual process:

(i) That multiple marked individuals might be affected by the same reproduction event
is referred to as coalescence.

(ii) Similar to the SLFVE, the locations z, z1, . . . , zk are referred to as the offspring
locations.

(iii) The marked individuals that are being replaced are referred to as the parent indi-
vidual(s).

(iv) We will refer to the parent individuals dying when they are replaced, and the off-
spring individuals being born, and to individuals being alive in between their birth
and death times.

(v) A lineage is a sequence of individuals (ζ0, . . . , ζm) such that ζ0 is the initial indi-
vidual, and ζj is the parent of ζj+1 for all j ∈ {0, . . . ,m − 1}. The lineage of a
particular individual ζ is such a sequence such that ζm = ζ. To be a lineage up to
time T , then ζm must be alive at time T .

2So for each value in
⋃

n∈N
(Rd × {0, 1})n that the process takes, the value of n represents the number

of individuals, each of which have a location in Rd and are either marked (1 ∈ {0, 1}) or unmarked
(0 ∈ {0, 1}).
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(vi) We shall later show that with high probability, coalescence does not occur for our
particular choice of scaling. Provided it does not occur, then neutral events will only
ever ‘move’ individuals, by killing the parent individual and replacing them with a
nearby offspring individual. In this scenario we shall instead think of these parent
and offspring individuals as being the same individual, which is moving according
to a pure jump process. In this case the birth and death times correspond to when
the individual is produced in an expansive event, or replaced in an expansive event,
respectively. Similarly we shall update our notion of lineage to being a sequence
of such pure jump processes, rather than a sequence of points. Any particular
individual will now also have a unique lineage.

Remark 2.5. In the usual way for such dualities, the SLFVE dual corresponds to a
backwards-in-time description of the SLFVE. As a result, the notions of ‘parent’ and
‘offspring’ in the dual are the wrong way around, biologically speaking: nonetheless we
use this way of talking about things for consistency with the terminology of branching
Brownian motion, which the SLFVE dual will later be shown to approximate.

Definition 2.6. Some further definitions relating to the dual process:

(i) Let LinT (Ξ) denote the number of lineages in Ξ up to time T .

(ii) Let SimulT (Ξ) denote the event

{There exist two distinct lineages in Ξ up to time T and t ∈ [0, T ] such that both

lineages are marked at time t.}

with complementary event NoSimulT (Ξ). If NoSimulT (Ξ) holds then there is at
most one marked individual at all times up to time T , which in particular means
that the lineages evolve independently and that coalescence does not occur.

(iii) For {ζi|i ∈ I} the set of lineages in Ξ up to time T , and letting ExpanT (ζ) denote
the number of expansive events experienced by the lineage ζ, we may now define

ExpanT (Ξ) = max
i∈I

[ExpanT (ζi)] .

(iv) Let p : Rd → [0, 1]. Let t > 0. Then the value of Ξt, with respect to p, is

Vp(Ξt) = 1−
Nt∏
i=1

(1− p(ξit)).

where Ξt = (ξ1
t , . . . , ξ

Nt
t ).

Remark 2.7. For αi ∼ Bernoulli(p(ξit)) for i ∈ {1, . . . , Nt}, conditionally independent on
Ξt, the value of Ξ has a probabilistic interpretation as

Vp(Ξt) = 1−
Nt∏
i=1

(1− p(ξit))

= E

[
1−

Nt∏
i=1

(1− αi)

∣∣∣∣∣Ξt

]
= E [max{αi | i ∈ {1, . . . , Nt}}|Ξt]
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The first equality holds by conditional independence of the αi, and the second equality
holds because each αi takes values in {0, 1}.

Notation. ForW a branching Brownian motion in Rd, we shall writeWt = (W 1
t , . . . ,W

Nt
t )

for the locations of the Nt individuals present at time t. The notation ‘Ex’ will denote
that it starts with a single individual at location x, that is, W0 = (W 1

0 ) with W 1
0 = x.

For consistency of notation, we will use the letter B for Brownian motion and the
letter W for branching Brownian motion.

Proposition 2.8 (Duality between the SLFVE and the SLFVE dual). Let w and Ξ be an
SLFVE and SLFVE dual, each driven by a Poisson point process with intensity measure
γ1dt⊗ γ2dx, each with the same parameters (u, s, R, k). Let p0 ∈ Cc(Rd; [0, 1]). Then for
all x ∈ Rd and t > 0,

Ep0 [wt(x)] = Ex [Vp0(Ξt)] .

Remark 2.9. Note that it does not matter whether or not the SLFVE and the SLFVE
dual are driven by the same or different Poisson point processes or not, as the result is
about equality of expectations. In fact, from the discussion preceding the definition of
the dual, we might expect that the SLFVE dual should be driven by the time-reversal
of the Poisson point process driving the SLFVE. A Poisson point process has the same
distribution as its time-reversal, however, so this is an unecessary complication when
stating our above result.

In light of this, we might wonder if we can improve our result to get an equality without
expectations, by coupling the SLFVE and the SLFVE dual in an appropriate way. This
seems unlikely, however: statements of the form of equations (2.4) and (2.5), below, are
likely to be the strongest that can be made. This is because the marking of individuals in
the dual represents a finite sampling from an infinitely large pool; proportion u of which
corresponds to the value wt−(z); proportion 1 − u corresponding to the value wt−(y), in
Definition 2.1 of the SLFVE. In short, the SLFVE has no analogue for the marking of
individuals in the SLFVE dual.

Proof of Proposition 2.8. In order to prove this result we consider a slight adaptation of
the SLFVE dual process, in which there is no recording of the marking of individuals.
Instead, every time a reproduction event occurs, each individual covered by the affected re-
gion of that reproduction event will independently sample from a Bernoulli(u) distribution
in order to determine if they are considered marked for the purposes of the reproduction
event. It is clear that this process has exactly the same dynamics as the usual SLFVE
dual process, it just that whether or not an individual is marked is instead determined as
events affect them, rather than before. Thus the state space is now

⋃
n∈N

(Rd)n.

Let Aw and AΞ be the generators for w and Ξ respectively. Let

f(w̃, Ξ̃) = Vw̃

(
Ξ̃
)

be defined for w̃ : Rd → [0, 1] and Ξ̃ ∈
⋃
n∈N

(Rd)n.

It is sufficient to prove that

(Awf( · , Ξ̃))(w̃) = (AΞf(w̃, · ))(Ξ̃) (2.1)
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as in the usual way this implies for all fixed t > 0 that

d

da
E
[
Vwa(Ξt−a)|w0 = p0, ξ

1
0 = x

]
= 0,

and thus that

Ep0 [wt(x)] = E
[
Vwt(Ξ0)|w0 = p0, ξ

1
0 = x

]
= E

[
Vw0(Ξt)|w0 = p0, ξ

1
0 = x

]
= Ex [Vp0(Ξt)]

as desired.
It remains to prove equation (2.1). For h ∈ (0,∞), x ∈ Rd, z ∈ B(x,R), let

Cw̃,Ξ̃
neu (h, x, z) be the event that

{w0 = w̃, Ξ0 = Ξ̃} ∩ {Precisely one neutral event for the SLFVE occurs at x in the time

interval (0, h] with offspring location z.}

And let Dw̃,Ξ̃
neu (h, x, z) be defined in the same way, except that it occurs for the SLFVE

dual. Similarly for z1, . . . , zk ∈ B(x,R), let Cw̃,Ξ̃
exp (h, x, z1, . . . , zk) be the event that

{w0 = w̃, Ξ0 = Ξ̃} ∩ {Precisely one expansive event for the SLFVE occurs at x in the time

interval (0, h] with offspring locations z1, . . . , zk.}

with corresponding event Dw̃,Ξ̃
exp (h, x, z1, . . . , zk) for the SLFVE dual.

Let Ξ̃ = (ξ1, . . . , ξN) and let Ix = {ξ1, . . . , ξN} ∩B(x,R). We compute

E
[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣Cw̃,Ξ̃

neu (h, x, z)
]

= E


1−

∏
j∈Ix

(1− (1− u)w̃(ξj)− uα)
N∏
i=1
i/∈Ix

(1− w̃(ξi))

−(1−
N∏
i=1

(1− w̃(ξi))

)∣∣∣∣∣∣∣
α ∼ Bernoulli(w̃(z))


=

N∏
i=1

(1− w̃(ξi))− w̃(z) ·
∏
j∈Ix

(1− (1− u)w̃(ξj)− u) ·
N∏
i=1
i/∈Ix

(1− w̃(ξi))

− (1− w̃(z)) ·
∏
j∈Ix

(1− (1− u)w̃(ξj)) ·
N∏
i=1
i/∈Ix

(1− w̃(ξi))

=
N∏
i=1
i/∈Ix

(1− w̃(ξi)) ·

(∏
i∈Ix

(1− w̃(ξi))− w̃(z)(1− u)|Ix| ·
∏
j∈Ix

(1− w̃(ξj))

− (1− w̃(z)) ·
∏
j∈Ix

(1− (1− u)w̃(ξj))

)
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=
N∏
i=1
i/∈Ix

(1− w̃(ξi)) ·

(∏
i∈Ix

(1− w̃(ξi))− w̃(z)(1− u)|Ix| ·
∏
j∈Ix

(1− w̃(ξj))

− (1− w̃(z)) ·
∑
D⊆Ix

u|D|(1− u)|Ix\D|
∏

j∈Ix\D

(1− w̃(ξj))

)

=
N∏
i=1
i/∈Ix

(1− w̃(ξi)) ·
∑
D⊆Ix
|D|>1

u|D|(1− u)|Ix\D|

(∏
i∈Ix

(1− w̃(ξi))− (1− w̃(z)) ·
∏

j∈Ix\D

(1− w̃(ξj))

)
.

(2.2)

Furthermore,

E
[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣Dw̃,Ξ̃
neu (h, x, z)

]
=
∑
D⊆Ix
|D|>1

u|D|(1− u)|Ix\D|

 N∏
i=1

(1− w̃(ξi))− (1− w̃(z)) ·
N∏
i=1
i/∈D

(1− w̃(ξi))


=

N∏
i=1
i/∈Ix

(1− w̃(ξi)) ·
∑
D⊆Ix
|D|>1

u|D|(1− u)|Ix\D|

(∏
i∈Ix

(1− w̃(ξi))− (1− w̃(z)) ·
∏

i∈Ix\D

(1− w̃(ξi))

)
.

(2.3)

Where the first equality holds due to our alternative interpretation of the marking of
individuals in the SLFVE dual.

So we see that equations (2.2) and (2.3) are equal. That is,

E
[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣Cw̃,Ξ̃

neu (h, x, z)
]

= E
[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣Dw̃,Ξ̃
neu (h, x, z)

]
. (2.4)

Similarly, one may check that

E
[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣Cw̃,Ξ̃

exp (h, x, z1, . . . , zk)
]

= E
[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣Dw̃,Ξ̃
exp (h, x, z1, . . . , zk)

]
. (2.5)

Now let VR be the volume of B(0, R) ⊆ Rd and let Ch be the event

{Precisely one reproduction event for the SLFVE occurs in the time interval (0, h]}.

with corresponding event Dh for the SLFVE dual. Then we compute

(Awf( · , Ξ̃))(w̃)

= lim
h→0

γ1 · E
[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣ {w0 = w̃} ∩ Ch

]
= γ1 · E

[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣ {w0 = w̃} ∩ Ch

]
= γ1γ2

∫
Rd

[
1− s
VR

∫
B(x,R)

E
[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣Cw̃,Ξ̃

neu (h, x, z)
]

dz

+
s

(VR)k

∫
(B(x,R))k

E
[
Vwh

(Ξ̃)− Vw̃(Ξ̃)
∣∣∣Cw̃,Ξ̃

exp (h, x, z1, . . . , zk)
]

dz1 · · · dzk

]
dx
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= γ1γ2

∫
Rd

[
1− s
VR

∫
B(x,R)

E
[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣Dw̃,Ξ̃
neu (h, x, z)

]
dz

+
s

(VR)k

∫
(B(x,R))k

E
[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣Dw̃,Ξ̃
exp (h, x, z1, . . . , zk)

]
dz1 · · · dzk

]
dx

= γ1 · E
[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣ {Ξ0 = Ξ̃} ∩Dh

]
= lim

h→0
γ1 · E

[
Vw̃(Ξh)− Vw̃(Ξ̃)

∣∣∣ {Ξ0 = Ξ̃} ∩Dh

]
= (AΞf(w̃, · ))(Ξ̃).

The first and final equalities follow in the usual manner from the Poisson nature of the
driving Poisson point process. The second and penultimate equalities follow from the
constancy of w and Ξ between reproduction events, for small enough h. The fourth
equality follows from (2.4) and (2.5). Thus equation (2.1) is established.

3 Scaling and Approximation

We consider a scaling limit in which we fix the fecundity parameter k of a sequence
of SFLVEs. More complicated scaling limits, in which k can vary, for example sending
k →∞, are considered in Section 6.

We begin with a sequence of technical lemmas showing that various forms of bad
behaviour — large numbers of expansive events, simultaneous marking of individuals,
and not approximating branching Brownian motion — occur only with small probability,
which then allow us to approximate the value of the dual by an equivalent ‘value’ of
branching Brownian motion, in Proposition 3.8. This is then used in the next section in
order to deduce the first of our main theorems. Our choice of scaling limit is influenced
heavily by [EFP17], from which much of this section is adapted.

Let d ∈ N. Let β ∈ (0, 1/4). Let u ∈ (0, 1), s ∈ (0, 1), R > 0 and k ∈ {2, 3, 4, . . .}.
For each n ∈ N, let

un =
u

n1−2β
and sn =

s

n2β
and Rn =

R

nβ
.

Let Πn be a Poisson point process on [0,∞)×Rd with intensity measure ndt⊗ nβdx.
Here nβdx denotes the scaling for which the linear scale factor of the infinitesimal region
dx is nβ, and so the volume of a region is scaled by ndβ.

For each n ∈ N, let wn be an SLFVE and Ξn be an SLFVE dual, in each case driven
by Πn, with parameters3 (un, sn, Rn, k).

Consider the motion of a single lineage in Ξn. It evolves as a pure jump process which
is homogenous in both space and time. Let VRn be the volume of B(0, Rn) ⊆ Rd, and

let V
(z)
Rn

be the volume of B(0, Rn) ∩ B(z,Rn), for z ∈ Rd. In order for the process to
jump from y to y + z, it has to be affected by a reproduction event that covers both y
and y + z. The volume of possible centres, x, of such reproduction events is V

(z)
Rn

, and so

the intensity with which such a centre is selected is n ·ndβ ·V (z)
Rn

. The offspring location is

3Note that k does not depend on n, but every other parameter does. For the more complicated case
in which k depends on n, see Section 6.
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chosen uniformly at random from the ball B(x,Rn), so the probability of z being chosen
is dz/VRn . Finally, the individual in our lineage must be marked to be affected, which
occurs with probability un. Thus we see that the jump intensity mn of the lineage is given
by

mn(dz) = n · ndβ · V (z)
Rn
· dz

VRn

· un = unn
1+dβ V

(z)
Rn

VRn

dz.

The total rate of jumps is∫
Rd
mn(dz) = unn

1+d. β 1

VRn

∫
Rd
V

(z)
Rn

dz

= unn
1+dβ 1

VRn

∫
Rd

∫
Rd
1{|x|<Rn}1{|x−z|<Rn} dx dz

= unn
1+dβVRn

= un2βRdV1.

Now 1 − sn of the jumps will be from neutral events, and sn of the jumps will be from
expansive events. Thus the lineage is affected by expansive events at rate η, where

η = un2βRdV1sn = usRdV1

which we note is independent of n. Let

λ = η(k − 1)

and let

σ2 =
1

d

∫
Rd
|z|2mn(dz) =

uRdV1

d
.

which is also independent of n.
Now we have some technical conditions necessary for our analysis. Let α ∈ (0, min{1−

4β, β}), and let b > 0 be small enough that

2b log k + 4β − 1 + α < 0 (3.1)

and now pick T > 0 small enough4 that

Tη < b, (3.2)

α + Tλ < β, (3.3)

b log k + Tλ+ b log

(
eTη

b

)
+ α < 0. (3.4)

Finally let
Tn = T log n and bn = b log n.

The first two results, Lemma 3.1 and Proposition 3.2, are adapted from Lemma 3.14
of [EFP17].

4Or equivalently we could impose that T u, s, R are collectively small enough that Tλ and Tη are
small enough that equations (3.2)–(3.4) hold.

10



3. SCALING AND APPROXIMATION Patrick Kidger

Lemma 3.1. The maximal number of expansive events experienced by any given lineage
is bounded in the following manner.

P
[
ExpanTn(Ξn) > bn

]
= o(n−α−Tλ)

and
P
[
ExpanTn(Ξn) > bn

∣∣NoSimulTn(Ξn)
]

= o(n−α−Tλ).

Proof. By equation (3.4), as n→∞,

(b log k + Tλ+ b log

(
eTη

b

)
+ α) log n→ −∞.

Taking an exponential yields

nb log k ·
(
eTη

b

)b logn

= o(n−α−Tλ). (3.5)

Now recall that for Z ∼ Poisson(χ), a Chernoff bound gives for α > χ that

P[Z > α] 6
e−χ(eχ)α

αα
6
(eχ

α

)α
. (3.6)

So let Zn ∼ Poisson(Tnη). Now by equation (3.2), bn = b log n > Tη log n = Tnη, so we
may apply (3.6) to deduce that

P[Zn > bn] 6

(
eTnη

bn

)bn
=

(
eTη

b

)b logn

. (3.7)

Now let Z = {ζi|i ∈ I} be the set of lineages in Ξn up to time Tn. Define an equivalence
relation ∼ on Z by ζ(1) ∼ ζ(2) if the first 1 + min{bn, ExpanTn(ζ(1)), ExpanTn(ζ(2))}
individuals of ζ(1) and ζ(2) are the same. Then

ExpanT (Ξ) = max
z∈Z/∼

max
i∈z

[ExpanT (ζi)] .

Letting P [ · ] refer to either P[ · ] or P[ · |NoSimulTn(Ξn)],

P
[
ExpanTn(Ξn) > bn

]
6 kbn · P

[
A particular lineage in Ξn

Tn experiences more than bn expansive events
]

= nb log k · P[Zn > bn]

6 nb log k ·
(
eTη

b

)b logn

= o(n−α−Tλ).

Where the first inequality is a union bound over Z/∼, the third inequality follows from
equation (3.7), and the final line from equation (3.5).

Proposition 3.2. It is only with low probability that two individuals are simultaneously
marked. Precisely,

P [SimulTn(Ξn)] = o(n−α).

11
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Proof. Consider a particular pair of lineages in Ξn up to time Tn. The number of re-
production events before time Tn whose affected region affects the first lineage is Poisson
with mean Θ(nTn) = Θ(n log n). After the reproduction event, the probability that both
lineages are marked is u2

n (regardless of whether the second lineage was affected by the
reproduction event as well). Thus the probability that both lineages are both marked at
some time t ∈ [0, Tn] is O(u2

nn log n) = O(n4β−1 log n).
To simplify notation, for some particular choice of two lineages, let:

A = {There exists t ∈ [0, Tn] such that two particular lineages are marked at time t.}

and let Mn
Tn

denote the number of pairs of lineages in Ξn up to time Tn.
Then by a union bound and Lemma 3.1,

P [SimulTn(Ξn)] 6 P
[
ExpanTn(Ξn) > bn

]
+ P

[
SimulTn(Ξn)

∣∣ExpanTn(Ξn) 6 bn
]

6 P
[
ExpanTn(Ξn) > bn

]
+ E

[
Mn

Tn

∣∣ExpanTn(Ξn) 6 bn
]
· P
[
A
∣∣ExpanTn(Ξn) 6 bn

]
6 o(n−α−Tλ) + k2bn · P [A]

P
[
ExpanTn(Ξn) 6 bn

]
= o(n−α−Tλ) + k2bn · O(n4β−1 log n)

1− o(n−α−Tλ)
= o(n−α) +O(k2bn · n4β−1 log n).

So it suffices to show that

k2bn · n4β−1 · log n = o(n−α).

Taking logs, this is equivalent to showing

(2b log k + 4β − 1 + α) log n+ log log n→ −∞,

which is true by equation (3.1).

Lemma 3.3. The expected number of lineages in Ξn up to time Tn, conditioned on
NoSimulTn(Ξn), is given by

E [LinTn(Ξn)|NoSimulTn(Ξn)] = nTλ.

Proof. As we are conditioning on NoSimulTn(Ξn), then coalescence does not occur. So
ignoring their spatial motion, the individuals of Ξn my be viewed as the vertices of a k-ary
tree, with edges between parent and offspring individuals.

Similarly, ignoring the spatial motion of k-adic branching Brownian motion, we may
view each branch point of k-adic branching Brownian motion as the internal vertices of a
k-ary tree, with the final individuals in the branching Brownian motion as the leaves of
the k-ary tree, and edges corresponding to the individual Brownian motions comprising
the branching Brownian motion.

Conditioning on NoSimulTn(Ξn), then each lineage in Ξn experiences expansive events
at rate η independently of each another. Thus the number of lineages in Ξn up to time
Tn is the same as the number of lineages, up to time Tn, in k-adic branching Brownian
motion with rate η; this is equivalently just the number of individuals at time Tn, which
is given classically by exp(η(k − 1)Tn) = nTλ.

12
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Corollary 3.4. For t ∈ [0, Tn], and letting Nn
t be the number of individuals in Ξn alive

at time t, then
E [Nn

t |NoSimulTn(Ξn)] 6 nTλ.

Proof. Provided that Ξn does not exhibit coalescence before time Tn, then the number of
lineages in Ξn up to time Tn is the same as the number of individuals alive at time Tn,
which is Nn

Tn
. No coalescence also implies that the number of individuals in Ξn can never

decrease, and so Nn
t 6 Nn

Tn
. So by Lemma 3.3,

E [Nn
t |NoSimulTn(Ξn)] 6 E

[
Nn
Tn

∣∣NoSimulTn(Ξn)
]

= E [LinTn(Ξn)|NoSimulTn(Ξn)]

= nTλ.

Lemma 3.5. Let ξ be a jump process in Rd with jump intensity (1− sn)mn. Then there
is a Brownian motion B so that for all t > 0 and all x ∈ Rd,

Px
[
|ξt −Bσ2t| > n−β/6

]
= O(n−β(t ∨ 1)).

This is just Lemma 3.8 of [EFP17], with jump intensity (1 − sn)mn instead of mn.
Note that they run their Brownian motions at rate two, hence our value of σ2 is twice
theirs.

Proposition 3.6. There is a k-adic branching Brownian motion W n in Rd with branching
rate η such that for all t ∈ [0, Tn] and x ∈ Rd,

Px

[
Nn

t⋃
i=1

{∣∣ξn,it −W n,i
σ2t

∣∣ > 4n−β/6bn
}∣∣∣∣∣NoSimulTn(Ξn)

]
= o(n−α)

where Ξn
t = (ξn,1t , . . . , ξ

n,Nn
t

t ) and W n
σ2t = (W n,1

σ2t , . . . ,W
n,Nn

t

σ2t ).
(In particular Ξn

t and W n
σ2t always have the same number Nn

t of individuals.)

Proof. Ignoring the underlying Poisson point process event-based model that is driving
Ξn, and noting that we are conditioning on there never being two or more simultaneously
marked individuals, which in particular implies that lineages evolve independently, then
we shall simply think of Ξn as a branching jump process performing jumps with intensity
(1 − sn)mn and branching with rate η. We condition on all of the branching events (at
what time they occurred, and which individual was affected) up to Tn. (We are not
conditioning on any individual branching event, but rather on some entire collection of
branching events).

So let A be any such event corresponding to such a collection of branching events.
Until otherwise specified later in this proof, we will be conditioning on this event having
occurred. Consider the behaviour of Ξn. The initial individual will jump around until it
reaches the end of its lifespan, as specified by A, and then branch into several offspring
individuals: each of these will then jump around until they reach the end of their lifespans,
again as specified by A, and they in turn branch: this goes on until eventually the final
time Tn is reached.

13
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Consider the lifetime of a particular individual; call this individual ζ. It will be born at
some time ι and die5 at some later time τ . Note that ι and τ are both completely specified
by A. In the mean time it evolves according to a pure jump process with jump intensity
(1− sn)mn. Normalise the process to start from the origin at time zero: that is, consider
the process t 7→ ζt+ι−ζι. Then we know from Lemma 3.5 that there is a Brownian motion
Bζ which approximates this normalised pure jump process in the manner described there.

Now we may simply define our branching Brownian motion as being the appropriate
composition of these Brownian motions: let χ0 be the initial individual in Ξn, with death
time τ0. Then for t ∈ [0, τ0), define W n

σ2t conditional on the event A as6 being the location

of the single individual at x+Bχ0

σ2t, where x is the initial location of χ0. Eventually χ0 will
branch, say into the individuals χ1, . . . , χk. Then until each of those individuals branches,

define W n
σ2t as being the locations of the individuals at x+Bχ0

σ2τ0
+Bχ1

σ2(t−τ0), . . . , x+Bχ0

σ2τ0
+

Bχk

σ2(t−τ0).

Continue to repeat in the obvious fashion. Thus, for a particular lineage (ζ0, . . . , ζm)
up to time t, with birth times ι0, . . . , ιm and death times τ0, . . . , τm, respectively7, then
the individual in the corresponding lineage of W n at time σ2t will have location W ′

σ2t

given by

W ′
σ2t = x+

(
m−1∑
j=0

Bζj

σ2(τj−τj−1)

)
+Bζm

σ2(t−τm−1) (3.8)

where we set τ−1 = 0.
We are now no longer conditioning on A. We have now defined our branching Brown-

ian motion. Note that so far, technically speaking, we have only constructed a Brownian
motion which undergoes branching, rather than the canonical Markovian branching Brow-
nian motion in which the wait time before branching is exponential. But that the wait
times behave in this manner is now immediate from our construction, due to our con-
ditioning on collections of branching events8: as Ξn is branching with exponential wait
times, and as W n shares its branch times, then W n also has exponential wait times, and
is therefore such a canonical branching Brownian motion.

Finally we show that this branching Brownian motion approximates Ξn in the manner
that we wish. Consider a particular lineage (ξ0, . . . , ξm) up to time t, with birth times
ι0, . . . , ιm and death times τ0, . . . , τm, respectively. First note that for all j ∈ {1, . . . ,m}
that

∣∣∣ξj−1
τj−1
− ξjιj

∣∣∣ 6 Rn, and thus for all q ∈ [ιj, τj] that

Px
[∣∣∣ξjq − ξj−1

τj−1
−Bζj

σ2(q−τj−1)

∣∣∣ > 2n−β/6
∣∣∣NoSimulTn(Ξn)

]
6 Px

[∣∣∣ξjq − ξjιj −Bζj

σ2(q−τj−1)

∣∣∣ > n−β/6
∣∣∣NoSimulTn(Ξn)

]
= O(n−β(q ∨ 1))

= O(n−β log n). (3.9)

The inequality holds for all n large enough that Rn 6 n−β/6, recalling that Rn = Θ(n−β).

5Or equivalently we hit our final time Tn.
6Events of this type partition the region of probability space in which there is no coalescence, so Wn

is well defined. We define Wn arbitrarily on the remainder of the probability space.
7Noting that ιj = τj−1 for each j.
8That is, events of the same type as A.
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The first equality holds by Lemma 3.5, and the final equality holds because q 6 τj 6
Tn = Θ(log n).

This then implies by Lemma 3.1 that

Px
[∣∣∣ξjq − ξj−1

τj−1
−Bζj

σ2(q−τj−1)

∣∣∣ > 2n−β/6
∣∣∣NoSimulTn(Ξn) ∩ {ExpanTn(Ξn) 6 bn}

]
6

Px
[∣∣∣ξjq − ξj−1

τj−1
−Bζj

σ2(q−τj−1)

∣∣∣ > 2n−β/6
∣∣∣NoSimulTn(Ξn)

]
P
[
ExpanTn(Ξn) 6 bn

∣∣NoSimulTn(Ξn)
]

=
O(n−β log n)

1− o(n−α−Tλ)
= O(n−β log n). (3.10)

Which in turn implies that

Px

[
m−1∑
j=0

∣∣∣ξjτj − ξjτj−1
−Bζj

σ2(τj−τj−1)

∣∣∣ > 2n−β/6bn

∣∣∣∣∣NoSimulTn(Ξn)

]

6 Px

[
m−1⋃
j=0

{∣∣∣ξjτj − ξjτj−1
−Bζj

σ2(τj−τj−1)

∣∣∣ > 2n−β/6bn/m
}∣∣∣∣∣NoSimulTn(Ξn)

]

6 Px

[
m−1⋃
j=0

{∣∣∣ξjτj − ξjτj−1
−Bζj

σ2(τj−τj−1)

∣∣∣ > 2n−β/6bn/m
}∣∣∣∣∣NoSimulTn(Ξn) ∩ {ExpanTn(Ξn) 6 bn}

]
+ P

[
ExpanTn(Ξn) > bn

∣∣NoSimulTn(Ξn)
]

6 Ex
[
m
∣∣NoSimulTn(Ξn) ∩ {ExpanTn(Ξn) 6 bn}

]
· Px

[∣∣∣ξjτj − ξjτj−1
−Bζj

σ2(τj−τj−1)

∣∣∣ > 2n−β/6bn/m
∣∣∣NoSimulTn(Ξn) ∩ {ExpanTn(Ξn) 6 bn}

]
+ P

[
ExpanTn(Ξn) > bn

∣∣NoSimulTn(Ξn)
]

6 bn · O(n−β log n) + o(n−α−Tλ)

= o(n−α−Tλ). (3.11)

The final inequality holds by noting that m 6 ExpanTn(Ξn) and applying equation (3.10)
for the first term, and by Lemma 3.1 for the second term. The final equality holds by
equation (3.3).

Now let τ−1 = 0 and W ′
σ2t be as in equation (3.8). Then by equations (3.9) and (3.11),

Px
[
|ξmt −W ′

σ2t| > 2n−β/6(bn + 1)
∣∣NoSimulTn(Ξn)

]
= Px

[∣∣∣∣∣
(
ξmt − ξm−1

τm−1
+

(
m−1∑
j=0

ξjτj − ξ
j
τj−1

)
+ x

)

−

(
x+

(
m−1∑
j=0

Bζj

σ2(τj−τj−1)

)
+Bζm

σ2(t−τm−1)

)∣∣∣∣∣ > 2n−β/6(bn + 1)

∣∣∣∣NoSimulTn(Ξn)

]
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6 Px
[∣∣∣ξmt − ξm−1

τm−1
−Bζm

σ2(t−τm−1)

∣∣∣ > 2n−β/6
∣∣∣∣NoSimulTn(Ξn)

]
+ Px

[
m−1∑
j=0

∣∣∣ξjτj − ξjτj−1
−Bζj

σ2(τj−τj−1)

∣∣∣ > 2n−β/6bn

∣∣∣∣∣NoSimulTn(Ξn)

]
= O(n−β log n) + o(n−α−Tλ)

= o(n−α−Tλ)

So by a union bound,

Px

[
Nn

t⋃
i=1

{∣∣ξn,it −W n,i
σ2t

∣∣ > 4n−β/6bn
}∣∣∣∣∣NoSimulTn(Ξn)

]

6 Px

[
Nn

t⋃
i=1

{∣∣ξn,it −W n,i
σ2t

∣∣ > 2n−β/6(bn + 1)
}∣∣∣∣∣NoSimulTn(Ξn)

]
6 Ex [Nn

t | NoSimulTn(Ξn)] · o(n−α−Tλ)
6 nTλ · o(n−α−Tλ)
= o(n−α)

with the first inequality following for n large enough that bn > 1, and the final inequality
following from Corollary 3.4.

Lemma 3.7. Let M ∈ N. Let p0 ∈ Cc(Rd; [0, 1]) have modulus of continuity ω. Note
that p0 is uniformly continuous so ω(δ) → 0 as δ → 0. Then for all δ small enough that
ω(δ) 6 1, the function δ 7→Mω(δ) is a modulus of continuity for

(z1, . . . , zM) 7→
M∏
i=1

(1− p0(zi))

with respect to the ∞-norm on (Rd)M .

Proof. Let δ > 0 be small enough that ω(δ) 6 1. Let (z
(1)
1 , . . . , z

(1)
M ), (z

(2)
1 , . . . , z

(2)
M ) ∈

(Rd)M be such that
∥∥∥(z

(1)
1 , . . . , z

(1)
M )− (z

(2)
1 , . . . , z

(2)
M )
∥∥∥
∞

6 δ, meaning that∣∣∣z(1)
i − z

(2)
i

∣∣∣ 6 δ (3.12)

for each i ∈ {1, . . . ,M}. (Where | · | denotes the usual Euclidean norm.)

Now for each i ∈ {1, . . . ,M}, let w
(1)
i = 1− p0(z

(1)
i ) and w

(2)
i = 1− p0(z

(2)
i ), so that∣∣∣w(1)

i − w
(2)
i

∣∣∣ =
∣∣∣p0(z

(2)
i )− p0(z

(1)
i )
∣∣∣ 6 ω(δ) (3.13)

by equation (3.12).
Hence

M∏
i=1

(1− p0(z
(1)
i ))−

M∏
i=1

(1− p0(z
(2)
i )) =

M∏
i=1

w
(1)
i −

M∏
i=1

w
(2)
i

6
M∏
i=1

(w
(2)
i + ω(δ))−

M∏
i=1

w
(2)
i

6Mω(δ)
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where the first inequality follows from equation (3.13), and the second inequality follows

because ω(δ) 6 1 and w
(2)
i 6 1.

Reversing the roles of z
(1)
i and z

(2)
i completes the proof.

Proposition 3.8. Let p0 ∈ Cc(Rd; [0, 1]) have modulus of continuity ω. Let W n be as in
Proposition 3.6. Then for t ∈ [0, Tn] and x ∈ Rd,∣∣∣∣∣Ex

[
Nn

t∏
i=1

(1− p0(ξn,it ))

]
− Ex

[
Nn

t∏
i=1

(1− p0(W n,i
σ2t))

]∣∣∣∣∣
= O

(
n−α + nTλ+α · ω

(
4n−β/6bn

))
.

Proof. To simplify notation, let

D1 =

Nn
t⋂

i=1

{∣∣ξn,it −W n,i
σ2t

∣∣ 6 4n−β/6bn
}

D2 =
{
Nn
t 6 nTλ+α

}
.

Now by Markov’s inequality, Proposition 3.6 and Corollary 3.4,

P [Dc
2|NoSimulTn(Ξn) ∩D1] 6

P [Dc
2|NoSimulTn(Ξn)]

P [D1|NoSimulTn(Ξn)]

6
E [Nn

t |NoSimulTn(Ξn)] · n−(Tλ+α)

1− o(n−α)

6 2n−α. (3.14)

Where the last inequality holds for n large enough that the denominator is smaller than
1/2.

Now it is elementary that for any random variable X such that 0 6 X 6 1, any event
Y , any ε ∈ (0, 1), and any event Z such that P [Z |Y ] > 1− ε, that

|E [X|Y ]− E [X|Y ∩ Z ]| 6 ε. (3.15)

So let X1 =
Nt∏
i=1

(1 − p0(ξn,it )) and X2 =
Nt∏
i=1

(1 − p0(W n,i
σ2t)). Then for j ∈ {1, 2}, by

Proposition 3.2 and equation (3.15),

|Ex [Xj]− Ex [Xj|NoSimulTn(Ξn)]| = o(n−α).

And for j ∈ {1, 2}, by Proposition 3.6 and equation (3.15),

|Ex [Xj|NoSimulTn(Ξn)]− Ex [Xj|NoSimulTn(Ξn) ∩D1 ]| = o(n−α).

And for j ∈ {1, 2}, by equation (3.14) and equation (3.15),

|Ex [Xj|NoSimulTn(Ξn) ∩D1]− Ex [Xj|NoSimulTn(Ξn) ∩D1 ∩D2 ]| 6 2n−α.

Next, by Lemma 3.7, the fact that we are conditioning on D1 and D2, and for n large
enough that ω(4n−β/6bn) 6 1,

|Ex [X1|NoSimulTn(Ξn) ∩D1 ∩D2 ]− Ex [X2|NoSimulTn(Ξn) ∩D1 ∩D2 ]|
6 Ex [ |X1 −X2| |NoSimulTn(Ξn) ∩D1 ∩D2 ]

6 nTλ+α · ω(4n−β/6bn)

And so bringing these inequalities together gives the result.
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4 Convergence to the Fisher–KPP equation

With Proposition 3.8 in hand, we are now ready to announce the result of the scaling
limit, which is done in Theorem 4.4: we find that the expectation of the SLFVE converges
uniformly to the solution of a Fisher–KPP equation.

We begin by stating some classical theory, describing the relationship between branch-
ing Brownian motion and the Fisher–KPP equation via the Skorokhod–McKean repre-
sentation.

Definition 4.1. We will need the following anisotropic space, with differing smoothness
in t and x. Although there is no standard notation for such a space, we shall use the
following notation, in line with [Eva10]. Let A ⊆ R. Then we let

C2
1([0,∞)× Rd;A) = {u : [0,∞)× Rd → A |u is continuous in [0,∞)× Rd, and ∇u,∇2u,

∂tu exist and are continuous in (0,∞)× Rd}

where ∇ and ∇2 involve spatial derivatives only, and ∇2 denotes the Hessian.

The next theorem is classical.

Theorem 4.2. Let W be a k-adic branching Brownian motion in Rd with branching rate
η. Let g ∈ C(Rd; [0, 1]). Let u : [0,∞)× Rd → R be defined by

u(t, x) = Ex

[
Nt∏
i=1

g(W i
t )

]

where Wt = (W 1
t , . . . ,W

Nt
t ).

Then u ∈ C2
1([0,∞) × Rd; [0, 1]) and is the unique solution (in this space) to the

Fisher–KPP equation: {
∂tu = 1

2
∆u+ η(uk − u),

u(0, x) = g(x).

Existence and uniqueness of a solution in C2
1([0,∞) × Rd; [0, 1]) is stated in [AW78,

Section 2]. The probabilistic representation of solutions is known as the Skorokhod–
McKean representation, see [Sko64] and [McK75].

Corollary 4.3. Let W be a k-adic branching Brownian motion in Rd with branching rate
η. Let p0 ∈ C(Rd; [0, 1]). Let v : [0,∞)× Rd → R be defined by

v(t, x) = 1− Ex

[
Nt∏
i=1

(
1− p0(W i

t )
)]

where Wt = (W 1
t , . . . ,W

Nt
t ).

Then v ∈ C2
1([0,∞) × Rd; [0, 1]) and is the unique solution (in this space) to the

Fisher–KPP equation {
∂tv = 1

2
∆v + η(1− v)(1− (1− v)k−1),

v(0, x) = p0(x)

18
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Proof. Let u = 1− v and g = 1− p0. Then u and g are as in Theorem 4.2 and the result
follows.

We may now assemble our results to deduce:

Theorem 4.4. Let d ∈ N. Let β ∈ (0, 1/4). Let α ∈ (0,min{1− 4β, β}). Let u ∈ (0, 1),
s ∈ (0, 1), R > 0 and k ∈ {2, 3, 4, . . .}. Let V1 be the volume of the ball B(0, R) ⊆ Rd.
Let η = usRdV1.

For each n ∈ N, let

un =
u

n1−2β
and sn =

s

n2β
and Rn =

R

nβ
.

Also let

σ2 =
uRdV1

d
.

Let Πn be a Poisson point process on [0,∞)×Rd with intensity measure ndt⊗nβdx. Let
p0 ∈ Cc(Rd; [0, 1]) have modulus of continuity ω.

For each n ∈ N, let wn be an SLFVE driven by Πn with parameters (un, sn, Rn, k).
Let v ∈ C2

1([0,∞)× Rd; [0, 1]) satisfy the Fisher–KPP equation{
∂tv = 1

2
∆v + η(1− v)(1− (1− v)k−1),

v(0, x) = p0(x).

Then there exists T > 0, b > 0 both sufficiently small so that for all t ∈ [0, T log n]
and x ∈ Rd, ∣∣Ep0 [wnt (x)]− v(σ2t, x)

∣∣ = O
(
n−α + nTλ+α · ω

(
4n−β/6b log n

))
.

Proof. Corollary 4.3 gives that

v(σ2t, x) = 1− Ex

[
Nn

t∏
i=1

(
1− p0(W n,i

σ2t)
)]
.

Combining this with Proposition 2.8, the definition of Vp0(Ξ
n
t ), and Proposition 3.8, gives

the result.

We see that precisely how good our approximation is depends on the regularity of p0,
in particular on the behaviour of its modulus of continuity. Reasonably mild conditions
on p0 are sufficient to give good results:

Corollary 4.5. Assume as in Theorem 4.4. Assume further that p0 is γ-Hölder contin-
uous, and that α < γβ/12. Then there exists T > 0 sufficiently small so that for all
t ∈ [0, T log n] and x ∈ Rd,∣∣Ep0 [(wnt (x)]− v(σ2t, x)

∣∣ = O
(
n−α

)
.

Proof. If p0 is γ-Hölder continuous then ω(δ) = O(δγ). Apply Theorem 4.4, and impose
the further smallness condition on T that 2α+Tλ < γβ/6, which is possible by the extra
restriction on α. Then

nTλ+α · ω
(
4n−β/6b log n

)
= O

(
nTλ+α−γβ/6 · (log n)γ

)
= o(n−α).
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Remark 4.6. We can nearly deduce an even better result: it is an easy adaptation of
Proposition 3.8 to get that the same bound holds for the expectation of the absolute value
of the difference, which can then be applied in the context of Corollary 4.5, say, to deduce
that

Ex
[∣∣Vp0(Ξ

n
t )− v(σ2t, x)

∣∣] = O(n−α).

This may now be used to give bounds on how far the SLFVE dual can deviate from its
expected value, via Markov’s inequality. The duality between wn and Ξn is not, however,
strong enough to then extend this same statement to wn.

From Theorem 4.4 and Corollary 4.5 we may now deduce further results about the
behaviour of the SLFVE. For example, from [AW78],

Theorem 4.7. Let F ∈ C1([0, 1]) be such that F (0) = F (1) = 0, that F (u) > 0 for
u ∈ (0, 1), and satisfy the KPP assumption

F (u) 6 F ′(0)u

for u ∈ [0, 1].
Let h ∈ Cc(Rd; [0, 1]) be nontrivial. Let v ∈ C2

1([0,∞)× Rd; [0, 1]) satisfy the Fisher–
KPP equation: {

∂tv = 1
2
∆v + F (v),

v(0, x) = h(x).

Then v represents the propagation, at asymptotic speed c∗ =
√

2F ′(0), of a transition
zone between the cases v = 0 and v = 1. Put precisely, this means that it enjoys the
following asymptotic speed property: that for all y ∈ Rd and all c > c∗,

lim
t→∞

sup
|x−y|>ct

v(t, x) = 0,

and for all y ∈ Rd and all c ∈ [0, c∗),

lim
t→∞

inf
|x−y|6ct

v(t, x) = 1.

The first statement follows from [AW78, Theorem 5.1], the second statement follows
from[AW78, Corollary 1 to Theorem 5.3], and the value of c∗ follows from [AW78, Propo-
sition 4.2] and the KPP assumption. Note that the value of our critical speed c∗ is slightly
different to [AW78], as we have a coefficient of 1/2 in front of the Laplacian; we have a
scaling of space.

And thus we may deduce:

Corollary 4.8. Assume as in Corollary 4.5. Let c∗ = σ2
√

2λ. Then for all y ∈ Rd,
c > c∗ and c′ ∈ [0, c∗),

lim
n→∞
t→∞

sup
|x−y|>ct

Ep0 [wnt (x)] = 0,

lim
n→∞
t→∞

inf
|x−y|6c′t

Ep0 [wnt (x)] = 1,

where the limits must be taken together: precisely, there exist τ > 0 and N > eτ/T that
the approximation holds for all n > N and all t ∈ [τ, T log n].9

9This is topologically a triangle in (n, t)-space.
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Proof. Fix ε > 0. Let F (u) = η(1− u)(1− (1− u)k−1). Then F ′(0) = η(k− 1) = λ and it
is an easy computation to check that F satisfies the KPP assumption. So apply Theorem
4.7 to deduce that for any y ∈ Rd, c/σ2 >

√
2λ and c′/σ2 ∈ [0,

√
2λ), there exists τ > 0

such that for all t > τ ,

sup
|x−y|> c

σ2 ·σ2t

v(σ2t, x) >
ε

2
,

inf
|x−y|6 c′

σ2 ·σ2t

v(σ2t, x) < 1− ε

2
.

Now pick N ∈ N large enough that T logN > τ and that the right hand side of
Corollary 4.5 is less than ε/2 to deduce that for all n > N and all t ∈ [τ, T log n],

sup
|x−y|> c

σ2 ·σ2t

Ep0 [wnt (x)] > ε,

inf
|x−y|6 c′

σ2 ·σ2t

Ep0 [wnt (x)] < 1− ε.

Having seen that the speed of propagation is
√

2λ =
√

2η(k − 1), we might expect
that a more complicated scaling limit worthy of investigation would be to send η → 0
and k → ∞ such that η(k − 1) = O(1). This will be contained in the ‘small η’ case
of the next two sections, in which we see that in this case we end up with convergence
to the heat equation. One point of potential confusion that is worth resolving: the heat
equation is often said to have infinite speed of propagation, whilst we have just stated
we will be investigating a limit of equations which all have the same constant speed of
propagation. How is this consistent? The answer is that the heat equation has infinite
speed of propagation of information, which in fact the Fisher–KPP equation exhibits as
well: from compact initial data, the solution nonetheless becomes nonzero everywhere,
instantly. The speed property of Theorem 4.7 is that of a wave speed.

5 Convergence of solutions to Fisher–KPP equations

In some sense, the previous section completes our investigation, as the scaling limit is
shown to converge to the solution of a differential equation. But what about more com-
plicated scaling limits? In the scaling limit so far investigated, there remain two free
parameters, namely η and k. Now we investigate what would happen if we wanted to
send η → 0 or k →∞. This could be after our previous scaling limit, or alongside it, by
having η and k depending on n. In this section we cover the former approach by means
of classical parabolic theory.

This section is essentially a technical one; the more biologically motivated reader may
wish to skip to Section 6 in which we apply these results to analyse more complicated
scaling limits.

We begin by stating a very general version of the Tychonoff Uniquenesss Theorem;
see [Ser18, Theorem 1.5 of Chapter 2] for a proof.
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Lemma 5.1 (Tychonoff Uniquenesss Theorem). Let T > 0 and M > 0. Let v be a
measurable function on [0, T ]× Rd such that for all (t, x) ∈ [0, T ]× Rd,

|v(t, x)| 6M exp
(
M |x|2

)
,

and for all 10 φ ∈ C∞c ((−1, T )× Rd),∫ T

0

∫
Rd

v(∂tφ+ ∆φ) dx dt = 0.

Then v = 0.

Lemma 5.2. Let f ∈ L∞([0,∞)× Rd) ∩
⋂
T>0

L2([0, T ]× Rd). Suppose that u is bounded

and measurable and solves {
∂tu = 1

2
∆u+ f,

u(0, x) = 0.

in [0,∞)× Rd.
Then for all T > 0,

‖u‖∞, [0,T ]×Rd 6 T‖f‖∞, [0,T ]×Rd .

Proof. Fix T > 0. As f ∈ L2([0, T ] × Rd), there exist fm ∈ C∞c ((0, T ) × Rd) such that
fm → f in L2([0, T ]×Rd). Let Φ be the heat kernel on [0,∞)×Rd, appropriately rescaled
so that it in fact solves ∂tΦ− 1

2
∆Φ = 0. Let

v(t, x) =

∫ t

0

∫
Rd

Φ(t− τ, x− y)f(y, τ) dy dτ,

vm(t, x) =

∫ t

0

∫
Rd

Φ(t− τ, x− y)fm(y, τ) dy dτ

for t > 0, x ∈ Rd. Note that vm → v in L2([0, T ]× Rd).
Then vm satisfies the heat equation with source∂tvm =

1

2
∆vm + fm

vm(0, x) = 0

in (0,∞)×Rd. (See [Eva10, Theorem 2 of Section 2.3]). In particular it is a distributional
solution: for all φ ∈ C∞c ((−1, T )× Rd),∫ T

0

∫
Rd
vm

(
∂tφ+

1

2
∆φ

)
dx dt = −

∫ T

0

∫
Rd
fmφ dx dt.

Now fm → f and vm → v in L2([0, T ]× Rd), so letting m→∞ gives∫ T

0

∫
Rd
v

(
∂tφ+

1

2
∆φ

)
dx dt = −

∫ T

0

∫
Rd
fφ dx dt.

10That φ is defined down to time −1 is just so that it need not be zero at time zero despite having
compact support.
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Except of course u satisfies the same equation, so u− v is a weak solution to the homoge-
nous equation. Now f is bounded so v is bounded, and by assumption u is bounded. So
we may apply the Tychonoff Uniqueness Theorem (Lemma 5.1) to u − v to deduce that
in fact u = v.

Finally, using the fact that
∫
Rd Φ dx = 1, it is clear that ‖v‖∞, [0,T ]×Rd 6 T‖f‖∞, [0,T ]×Rd ,

giving the desired result.

Lemma 5.3. Let p0 ∈ Cc(Rd; [0, 1]) and let v ∈ C2
1([0,∞)× Rd; [0, 1]) solve the Fisher–

KPP equation {
∂tv = 1

2
∆v + η(1− v)(1− (1− v)k−1),

v(0, x) = p0(x).

Then
v ∈ L∞([0,∞)× Rd) ∩

⋂
T>0

L2([0, T ]× Rd)

and
(1− v)(1− (1− v)k−1) ∈ L∞([0,∞)× Rd) ∩

⋂
T>0

L2([0, T ]× Rd).

Proof. As v maps into [0, 1] the L∞ bound is trivial.
Fix T > 0. We note that (1− v)(1− (1− v)k−1) = vpk−1(v) for some polynomial pk−1

of degree k − 1. Furthermore, v maps into [0, 1], so pk−1(v) is bounded by some constant
c0 depending only on k. So

(1− v)(1− (1− v)k−1) = vpk−1(v) 6 c0v.

Now using that both v and pk−1(v) are bounded, by the Feynman–Kac formula,

v(t, x) = Ex
[
p0(Bt) exp

(
η

∫ t

0

pk−1(v(t− τ, Bτ )) dτ

)]
6 Ex [p0(Bt) exp (ηtc0)]

6 exp (ηTc0)Ex [p0(Bt)] .

Recognising that Ex [p0(Bt)] ∈ L2([0, T ] × Rd) as it is the bounded solution to the heat
equation with compactly supported initial data p0 then gives the result.

5.1 Small η

First we consider sending η → 0, and allow k to do whatever it pleases. This means that
the nonlinearity tends to zero uniformly in v, so we will deduce uniform convergence to
the heat equation.

Proposition 5.4. Let p0 ∈ Cc(Rd; [0, 1]). For m ∈ N, let (km) be any sequence on
{2, 3, 4, . . .}, and let (ηm) be a positive sequence such that ηm → 0 as m → ∞. Let
vm ∈ C2

1([0,∞)× Rd; [0, 1]) solve the Fisher–KPP equation{
∂tvm = 1

2
∆vm + ηm(1− vm)(1− (1− vm)km−1),

vm(0, x) = p0(x),
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and let v ∈ C∞((0,∞)× Rd) ∩ C([0,∞)× Rd) solve the heat equation11{
∂tv = 1

2
∆v,

v(0, x) = p0(x).

Then for all T > 0,
‖v − vm‖∞, [0,T ]×Rd = O(ηm)

That is, vm → v in L∞([0, T ]× Rd), which implies that vm
∗
⇀ v in L∞([0,∞)× Rd).

Proof. Fix T > 0. Let fm = ηm(1 − vm)(1 − (1 − vm)km−1). So fm ∈ L∞([0, T ] × Rd) ∩⋂
T>0

L2([0, T ]× Rd) by Lemma 5.3. Now vm − v satisfies

{
∂t(vm − v) = 1

2
∆(vm − v) + fm,

vm(0, x)− v(0, x) = 0,

so by Lemma 5.2,

‖vm − v‖∞, [0,T ]×Rd 6 T‖fm‖∞, [0,T ]×Rd = O(ηm).

It is clear that this immediately implies that vm → v in [0,∞) × Rd in the sense of
distributions: just pick T large enough that [0, T ]×Rd contains the support of the chosen
test function. As vm are uniformly bounded in L∞([0,∞) × Rd), then it is elementary
that in fact the convergence is weak* as well: let g ∈ L1([0,∞) × Rd), and let gn ∈
C∞c ((0,∞)× Rd be such that gn → g in L1([0,∞)× Rd). Then∣∣∣∣∫ ∞

0

∫
Rd
vg dx dt−

∫ ∞
0

∫
Rd
vmg dx dt

∣∣∣∣
6 ‖vg − vgn‖1, [0,∞)×Rd + ‖vgn − vmgn‖1, [0,∞)×Rd + ‖vmgn − vmg‖1, [0,∞)×Rd

6 2‖g − gn‖1, [0,∞)×Rd + ‖vgn − vmgn‖1, [0,∞)×Rd .

and now pick n large enough that the first term is small, and then pick m large enough
that the middle term is small.

5.2 Constant η, large k

Lemma 5.5 (Weak Maximum Principle). Let c ∈ R. Let u ∈ C2
1([0,∞) × Rd;R) be

bounded and such that

∂tu−
1

2
∆u+ cu 6 0,

in [0,∞)× Rd.
Suppose also that u 6 0 on {0} × Rd.
Then

sup
x∈Rd
t∈[0,∞)

u(t, x) 6 0.

11See [Eva10, Theorem 1 of Section 2.3] for existence of such a u.
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Remark 5.6. In particular note that no assumption is made on the sign of c. Note also
by continuity and decay of u that both supremums are in fact maximums. Finally, note
that it should be possible to strengthen the result to those u merely satisfying a growth
condition of the form u(t, x) 6 A exp

(
a|x|2

)
on compact time intervals, but this is an

unnecessary complication for us. (See [Eva10, Theorem 6 of Section 2.3].)

Proof of Lemma 5.5. Let ε > 0 and let

vε(t, x) = ectu(t, x)− ε(dt+ |x|2)

Then
∂tvε − 1

2
∆vε 6 0

in [0,∞)× Rd.
Fix T > 0 and R > 0. Let Ω = [0, T ]×B(0, R). Let u be bounded by C. Now

vε 6 ecTC − εR2

on [0, T ]× ∂B(0, R), and
vε 6 0.

on {0} ×B(0, R). So by the weak maximum principle for the heat equation (see [Eva10,
Theorem 8 of Section 7.1]),

sup
x∈B(0,R)
t∈[0,T ]

vε(t, x) 6 max
{

ecTC − εR2, 0
}
.

Let R→∞ to deduce that for x ∈ Rd and t ∈ [0, T ],

vε(t, x) 6 sup
x∈Rd
t∈[0,T ]

vε(t, x) 6 0.

And so

sup
x∈Rd
t∈[0,T ]

u(t, x) 6 sup
t∈[0,T ]

e−ct · sup
x∈Rd
t∈[0,T ]

ectu(t, x)

= max{1, e−cT} · sup
x∈Rd
t∈[0,T ]

lim
ε→0

vε(t, x)

6 0.

Finally let T →∞ to deduce the result.

Lemma 5.7. Let p0 ∈ Cc(Rd; [0, 1]). Let η > 0. For m ∈ N, let (km) be a monotonically
nondecreasing sequence on {2, 3, 4, . . .}. Let vm ∈ C2

1([0,∞)×Rd; [0, 1]) solve the Fisher–
KPP equation {

∂tvm = 1
2
∆vm + η(1− vm)(1− (1− vm)km−1),

vm(0, x) = p0(x).

Then (vm) is pointwise monotonically nondecreasing.

25



5. CONVERGENCE OF SOLUTIONS TO F–KPP EQUATIONS Patrick Kidger

Proof. For ease of notation, let um = 1− vm, so that um solves{
∂tum = 1

2
∆um + η(ukmm − um),

um(0, x) = 1− p0(x).

We will show that (um) is pointwise monotonically nonincreasing.
Fix m,n ∈ N such that n 6 m, so kn 6 km. As um maps into [0, 1], this means that

ukmm 6 uknm , and thus that

ukmm − uknn 6 uknm − uknn

= (um − un)
kn−1∑
j=0

ukn−j−1
m ujn

6 kn(um − un).

And hence

∂t(um − un)− 1

2
∆(um − un) = η(ukmm − uknn − um + un)

6 η(kn − 1)(um − un).

Let c1 = −η(kn − 1). Then w = um − un is bounded and satisfies{
∂tw − 1

2
∆w + c1w 6 0,

w(0, x) = 0.

So Lemma 5.5 implies that w 6 0 in [0,∞)× Rd, which gives the result.

Proposition 5.8. Let p0 ∈ Cc(Rd; [0, 1]) be nontrivial 12. Let η > 0. For m ∈ N, let (km)
be a sequence on {2, 3, 4, . . .} tending to infinity. Let vm ∈ C2

1([0,∞) × Rd; [0, 1]) solve
the Fisher–KPP equation{

∂tvm = 1
2
∆vm + η(1− vm)(1− (1− vm)km−1),

vm(0, x) = p0(x).

Then there exists v ∈ C∞((0,∞)×Rd; [0, 1])∩C([0,∞)×Rd; [0, 1]) solving the equation{
∂tv = 1

2
∆v + η(1− v),

v(0, x) = p0(x). (5.1)

such that for all T > 0, vm → v in L∞([0, T ]× Rd), and vm
∗
⇀ v in L∞([0,∞)× Rd).

Proof. First we show uniqueness of v. Suppose there exists v(1), v(2) solving equation
(5.1). Then ψ = v(1) − v(2) solves {

∂tψ = 1
2
∆ψ − ηψ,

ψ(0, x) = 0.

12This assumption isn’t absolutely necessary, but the convergence is no longer to the solution of equation
(5.1). In the following proof we prove that a particular term tends to zero, and in this edge case that
will no longer hold. If we wished we could allow p0 to be trivial and place an extra −η1{0}(v) term in
equation (5.1).
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Now v(1) and v(2) are bounded so ψ is bounded, so Lemma 5.5 implies that v(1) 6 v(2).
Reversing the roles of v(1) and v(2) gives uniqueness.

Next, consider any subsequence of (vm). As km → ∞, we may pick a further subse-
quence, call it (vmj

), such that kmj
is monotonically increasing. Suppose we can show

our Proposition for this subsequence, namely that there exists some v satisfying equation
(5.1) such that vmj

→ v in L∞([0, T ] × Rd) and vmj

∗
⇀ v in L∞([0,∞) × Rd), where

in principle the limit v may depend on the choices of subsequences. But we have just
demonstrated that we have uniqueness of solution to equation (5.1), and so in fact every
such subsequence much converge to the same limit. Now a sequence converges if and only
if all subsequences have a subsequence converging to the same value, and so (vm) itself
must converge to v in these ways. So without loss of generality, (km) may be assumed to
be monotonically increasing.

With this assumption, Lemma 5.7 implies that (vm) is pointwise monotonically non-
decreasing. Furthermore, each vm is bounded (as they map into [0, 1]), and so in fact (vm)
is pointwise convergent, say to v.

Now for every φ ∈ C∞c ((−1,∞)× Rd),∫ ∞
0

∫
Rd
vm

(
∂tφ+

1

2
∆φ

)
dx dt→

∫ ∞
0

∫
Rd
v

(
∂tφ+

1

2
∆φ

)
dx dt (5.2)

by monotone convergence.
But also, ∫

Rd
p0(x)φ(0, x) dx+

∫ ∞
0

∫
Rd
vm

(
∂tφ+

1

2
∆φ

)
dx dt

=

∫ ∞
0

∫
Rd

(
−∂tvm +

1

2
∆vm

)
φ dx dt

= −
∫ ∞

0

∫
Rd
η(1− vm)(1− (1− vm)km−1)φ dx dt

= −
∫ ∞

0

∫
Rd
η(1− vm)φ− η(1− vm)kmφ dx dt

→ −
∫ ∞

0

∫
Rd
η(1− v)φ dx dt. (5.3)

This convergence needs a little explanation. The first term converges by monotone con-
vergence again. As for the second term, we begin by noting that ∂tv1 − 1

2
∆v1 = η(1 −

v1)(1 − (1 − v1)k1−1) > 0, so by the strong maximum (minimum) principle,13 if v1 ever
equalled its minimum value of zero at some point of (0,∞) × Rd, then it must be the
constant zero function. As p0 6≡ 0 then this is a contradiction. Thus v1 > 0 in (0,∞)×Rd,
and so

1− v1 < 1. (5.4)

Thus ∣∣∣∣∫ ∞
0

∫
Rd
η(1− vm)kmφ dx dt

∣∣∣∣ 6 ∫ ∞
0

∫
Rd
η(1− vm)km|φ| dx dt

6
∫ ∞

0

∫
Rd
η(1− v1)km|φ| dx dt

→ 0

13See [Eva10, Theorem 11 of Section 7.1]
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where the second inequality is by monotonicity of (vm), and the convergence is by mono-
tonicity of (km) and equation 5.4.

And so equations (5.2) and (5.3) together imply that v is a distributional solution to
equation (5.1). (In particular including the initial condition.) So let w(t, x) = v(t, x)eηt +
1− eηt. Then w is a distributional solution to the heat equation with initial condition p0.
But we know that there exists a smooth bounded solution w̃ to the heat equation with
initial condition p0. As the vm map into [0, 1] and converge pointwise to v then v must
map into [0, 1] as well. Hence w is bounded on compact time intervals, so we may apply
the Tychonoff Uniqueness Theorem (Lemma 5.1) to w− w̃ to deduce that in fact w = w̃,
and so in particular w is smooth. Thus v is smooth as well. Similarly, w̃ is continuous up
to the initial time {t = 0}, so v is as well.

Now for fixed m,n, let w(t, x) = (vm(t, x)− vn(t, x))eηt. Then w satisfies{
∂tw = 1

2
∆w + ηeηt

[
(1− vn)kn − (1− vm)km

]
,

w(0, x) = 0.

Now

(1− vn)kn − (1− vm)km

= (1− vm)(1− (1− vm)km−1)− (1− vn)(1− (1− vn)kn−1) + vm − vn

which belongs to L∞([0, T ] × Rd) ∩
⋂
T>0

L2([0, T ] × Rd) by Lemma 5.3. So Lemma 5.2

implies that

‖w‖∞, [0,T ]×Rd 6 T
∥∥ηeηt

[
(1− vn)kn − (1− vm)km

]∥∥
∞, [0,T ]×Rd .

6 TηeηT
[∥∥(1− v1)kn

∥∥
∞, [0,T ]×Rd +

∥∥(1− v1)km
∥∥
∞, [0,T ]×Rd

]
→ 0

as m,n → ∞, with convergence because 1 − v1 is uniformly bounded away from one
on compact time intervals, as it satisfies equation 5.4, is continuous, and by Lemma 5.3
belongs to L2([0, T ]× Rd).

This implies that (vm) is L∞([0, T ]×Rd)-Cauchy, so the result now follows in the same
was as in the end of the proof of Proposition 5.4.

Remark 5.9. We see from the above proof that in fact it is possible to characterise the
limit function v as v(t, x) = w(t, x)e−ηt + 1− e−ηt, where w solves the heat equation with
initial condition p0. This is also a way in which uniqueness of v could be proved.

Remark 5.10. We note, as in Remark 2.2, that we expect that we expect the results
of this subsection to hold for random k as well, provided that the meaning of k being
both random and large is suitably interpreted. For example, it is sufficient for km to have

probability generating function
Nm∑
i=lm

k
(i)
m xi, with lm, Nm → ∞. The corresponding notion

of monotonicity that is recovered (without loss of generality) is that for all m,n,N ∈ N

such that n 6 m that
N∑
i=0

(
k

(i)
m − k(i)

n

)
6 0, where k

(i)
m = 0 if i < lm.
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Remark 5.11. In both the small η and the constant η, large k case, the key fact that
we are exploiting is that the nonlinear term ‘η(1 − v)k’ converges uniformly to zero. As
such — in a similar fashion to the next remark — it should be possible to extend to a
‘convergent η, large k’ case.

Remark 5.12. We note that it should be possible to extend our above results to sequences
of functions with varying initial data, provided it converges uniformly. This means that
we will get nonzero initial conditions in our comparisons between solutions. The proof of
Lemma 5.2 may be extended to cover a nonzero initial condition, in which case the L∞

bound of this initial condition will appear on the right hand side. Proposition 5.8 then
needs some adaptation: varying initial conditions mean that monotonicity need not hold.
Fortunately, we only use monotonicity as it is convenient, but it is not integral to the
proof — bounded convergence may be substituted. Some care is necessary to bound the
nonlinearity away from one (to ensure that the limit function does not have a ‘1{0}(v)’
term in its equation): this is done by constructing an initial condition function p eventually
bounding the sequence of initial condition functions below, say from m onwards, and then
comparing to the solution of{

∂tv = 1
2
∆v + η(1− v)(1− (1− v)km−1),

v(0, x) = p(x).

It is clear that we may now combine the results of this section and our last section
to deduce L∞loc convergence of wn to solutions of the heat equation or the Fisher–KPP
equation: Fix m sufficiently large, then apply Corollary 4.5 (or Theorem 4.4) with η = ηm,
k = km, and then apply Proposition 5.4 or Proposition 5.8. This gives:

Theorem 5.13. Assume as in Corollary 4.5. Furthermore, allow u, s, R, k, now denoted
um, sm, Rm, km, to be sequences in m ∈ N, and let ηm = umsmR

d

mV1.

(i) If ηm → 0 as m → ∞, then let v ∈ C∞((0,∞) × Rd; [0, 1]) ∩ C([0,∞) × Rd; [0, 1])
solve the heat equation {

∂tv = 1
2
∆v,

v(0, x) = p0(x).

Then for all t ∈ [0, T log n] and x ∈ Rd,∣∣Ep0 [wnt (x)]− v(σ2t, x)
∣∣ = O

(
n−α + ηm

)
.

(ii) Assume also that p0 is nontrivial. If ηm = η is constant and km → ∞ as m → ∞,
then there exists v ∈ C∞((0,∞) × Rd; [0, 1]) ∩ C([0,∞) × Rd; [0, 1]) solving the
equation {

∂tv = 1
2
∆v + η(1− v),

v(0, x) = p0(x),

such that for all t ∈ [0, T log n] and x ∈ Rd,∣∣Ep0 [wnt (x)]− v(σ2t, x)
∣∣→ 0

uniformly in t and x as both n,m→∞. (The order of limits does not matter.)
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6 Alternate Scaling Limits

We now move on to considering the scenario that η and k depend explicitly on n. Much
of our initial set-up will mimic that of Section 3. We will have to be careful to ensure
that the result of our scaling limit remains true: once we have that, then we may apply
the results of Section 5 to deduce the overall convergence.

For our first scaling limit, in which we demand that η be small, we find that we
converge to the heat equation, see Theorem 6.2. This is clearly not modelling population
expansion in the manner that we wish; if anything it is merely representing population
redistribution! Thus we see that this model is unsuitable. The reason for this behaviour
is that in demanding that η become small, we do so by letting the reproduction parameter
s, which determines the proportion of reproduction events which are expansive, become
small. We let s become small — rather than say, letting u become small, which would
also give the desired affect of letting η become small — as doing so requires the fewest
modifications to our arguments in Section 3. Attempting to reproduce this case by scaling
in some other way merits further investigation.

In the second scaling limit, we try a little harder, and ask that η be constant whilst k
grows large, see Theorem 6.5. Here we find that we get the opposite problem: all of space
finds itself with a growing amount of population, subject to a perturbation describing the
effect of the initial data: the population density is asymptotically homogenous in each of
space and time. See Remark 5.9.

Starting from the Fisher–KPP equation, it is clear that there is little in the way of
other viable limits to consider. Thus we see that if we hope to model population expansion
in a manner similar to that which is done here, then we have perhaps two choices: the
first is accept the Fisher–KPP equation itself (the result of our simpler scaling limit in
Section 4) as modelling population expansion. This is not such a bad choice; the equation
has already been used to model population expansion, see [Ske51] or perhaps [VOAE14].
The second is to perhaps attempt to reproduce the small η case in some other way, as
discussed above.

6.1 Small η

Let d, β, u, s, R be as in Section 3. For n ∈ N, let (kn) be any sequence on {2, 3, 4, . . .}
such that kn = O(log n). In particular pick k such that14 kn 6 k log n. Now for n ∈ N let

sn =
s

n2β(k log n− 1)

Let (un) and (Rn) be as in Section 3.
Let Πn be a Poisson point process on [0,∞)×Rd with intensity measure ndt⊗ nβdx

as in Section 3. For each n ∈ N, let wn be an SLFVE and Ξn be an SLFVE dual, in each
case driven by Πn, with parameters (un, sn, Rn, kn).

Let mn be the jump intensity of a single lineage in Ξn. It is the same as in Section 3,
so the total rate of jumps is once again

un2βRdV1.

14Technically speaking we’re playing a little fast and loose for small n: this inequality cannot hold for
n = 1, as then 2 6 k1 6 k log 1 = 0. Nonetheless we keep this description for clarity of notation, as we’re
only interested in the tail anyway.
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Now 1 − sn of the jumps will be from neutral events, and sn of the jumps will be from
expansive events. Thus the lineage is affected by expansive events at rate ηn, where

ηn = un2βRdV1sn =
usRdV1

k log n− 1

which we note is no longer independent of n. Let

λ = ηn(k log n− 1) = usRdV1

which remains independent of n. Note that λ > ηn as k log n− 1 > kn − 1 > 1.
Let σ2 be as in Section 3.
The technical conditions are easier to handle this time around. Let α > 0 and T > 0,

and pick b > 0 large enough — note that before we had to pick it sufficiently small —
that15

Tλ < b (6.1)

b+ b log

(
eTλ

b

)
+ α + Tλ < 0. (6.2)

Finally let
Tn = T log log n and bn = b log log n.

We now move on to investigating how each our of our results changes under this scaling;
in all cases the arguments involved remain the same so we shall merely summarise the
key points.

(i) The maximal number of expansive events, as in Lemma 3.1, is now

P
[
ExpanTn(Ξn) > bn

]
= o((log n)−α−Tλ).

To see this, let Zn ∼ Poisson(Tnηn), so that then by equation (6.1) we may apply
the Chernoff bound to give that

P[Zn > bn] 6

(
eTnηn
bn

)bn
=

(
eTλ

b(k log n− 1)

)b log logn

.

Now equation (6.2) implies that[
b log

(
k log n

k log n− 1

)
+ b log

(
eTλ

b

)
+ α + Tλ

]
log log n→ −∞

Thus bounding the maximal number of expansive events by

kbnn · P[Zn > bn] 6 (k log n)b log logn ·
(

eTλ

b(k log n− 1)

)b log logn

= o((log n)−α−Tλ).

15If we wanted to be consistent with the previous section, then we could instead take b > 0 arbitrary
and impose that T > 0 be sufficiently small that the condition holds. But in some sense T is ‘more
important’ than b (for example, only T appears in Corollary 4.5), so it makes sense to grant it the greater
freedom.
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(ii) The probability of having simultaneously marked individuals, as in Proposition 3.2,
is now

P [SimulTn(Ξn)] = o((log n)−α).

To see this, it suffices to show that

k2bn
n · n4β−1 · log n = o((log n)−α)

which is easy, recalling that 4β − 1 < 0.

(iii) The expected number of lineages, conditioned on NoSimulTn(Ξn), as in Lemma 3.3,
is now bounded by

E [LinTn(Ξn)|NoSimulTn(Ξn)] = exp(ηn(kn − 1)Tn) 6 exp(λTn) = (log n)Tλ.

This also bounds the expected number of individuals, as in Corollary 3.4.

(iv) Applying these changes to Proposition 3.6, we find that the approximation to
branching Brownian motion now occurs at rate o((log n)−α).

(v) Adjusting the definition of D2 in Proposition 3.8 to {Nn
t 6 (log n)Tλ+α} gives our

overall convergence at rate

O((log n)−α + (log n)Tλ+α · ω(4n−β/6bn)).

And so we can now bring these results together to state an equivalent to Theorem 4.4
describing this alternate scaling:

Proposition 6.1. Let d ∈ N. Let β ∈ (0, 1/4). Let α > 0. Let u ∈ (0, 1), s ∈ (0, 1),
k > 0, R > 0 and T > 0. Let V1 be the volume of the ball B(0, R) ⊆ Rd. Let λ = usRdV1.
For n ∈ N, let (kn) be any sequence on {2, 3, 4, . . .} such that kn 6 k log n.

For each n ∈ N, let

un =
u

n1−2β
and sn =

s

n2β(k log n− 1)
and Rn =

R

nβ

and Tn = T log log n and ηn =
λ

k log n− 1
.

Also let

σ2 =
uRdV1

d
.

Let Πn be a Poisson point process on [0,∞)×Rd with intensity measure ndt⊗nβdx. Let
p0 ∈ Cc(Rd; [0, 1]) have modulus of continuity ω.

For each n ∈ N, let wn be an SLFVE driven by Πn with parameters (un, sn, Rn, kn),
and let vn ∈ C2

1([0,∞)× Rd; [0, 1]) satisfy the Fisher–KPP equation{
∂tvn = 1

2
∆vn + ηn(1− vn)(1− (1− vn)kn−1),

vn(0, x) = p0(x).

Then there exists b > 0 sufficiently large that for all t ∈ [0, Tn] and x ∈ Rd,∣∣Ep0 [wnt (x)]− vn(σ2t, x)
∣∣ = O((log n)−α + (log n)Tλ+α · ω(4n−β/6b log log n)).
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Which we may now combine with Proposition 5.4 (which we note in this regime gives
O((log n)−1) rate of convergence) to deduce that

Theorem 6.2. Assume as in Proposition 6.1. Let v ∈ C∞((0,∞)×Rd; [0, 1])∩C([0,∞)×
Rd; [0, 1]) solve the heat equation {

∂tv = 1
2
∆v,

v(0, x) = p0(x).

Then for all t ∈ [0, Tn] and x ∈ Rd,∣∣Ep0 [wnt (x)]− v(σ2t, x)
∣∣ = O((log n)−min{α,1} + (log n)Tλ+α · ω(4n−β/6b log log n)).

Remark 6.3. The bound in the new version of Proposition 3.2 was easily attained. By
being more careful, it is possible to get a better, more technical result: pick γ ∈ (0, 1),
and demand that

bn = b(log n)γ,

Tn = T (log n)γ,

kn 6 exp
(
k(log n)1−γ),

Tλ < b,

b+ b log

(
eTλ

b

)
+ Tλ < 0,

α < 1− 4β,

bk < 1− 4β − α.

Then the approximation to branching Brownian motion occurs at rate exp(−O((log n)γ)),
meaning that the overall convergence occurs at rate

exp(−O((log n)γ)) + exp((λT + α)(log n)γ) · ω(4n−β/6bn).

6.2 Constant η, large k

Choosing a scaling limit for this regime is a little more complicated. As we are letting k
grow large, but insisting that we fix η, we see that we have no choice but to allow λ to
grow large as well. We must be careful that it does not grow so rapidly that, for example,
our expected number of lineages blows up.

There are two key relative scalings that we have to preserve. The first is

knTn = o(bn),

which is necessary to get that the probability of there being many expansive events is
small. The same relation is also necessary for the dual to approximate branching Brownian
motion. The second relation is

kbnn · n4β−1 · Tn = o(1),

so that the probability of there being two simultaneously marked individuals is small.
So let d, β, u, s, R be as in Section 3. For n ∈ N, let (kn) be a sequence on {2, 3, 4, . . .}

tending to infinity such that kn = O(log log n). In particular pick k such that kn 6
k log log n. Now for n ∈ N let (un), (sn) and (Rn) be as in Section 3.
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Remark 6.4. Continuing on from Remarks 2.2 and 5.10, we once again expect that our
results should hold for random k. Here it would suffice to consider kn as in Remark 5.10,
with the additional condition that ln = O(log log n) and Nn = O(log log n).

Let Πn be a Poisson point process on [0,∞)×Rd with intensity measure ndt⊗ nβdx
as in Section 3. For each n ∈ N, let wn be an SLFVE and Ξn be an SLFVE dual, in each
case driven by Πn, with parameters (un, sn, Rn, kn).

Let mn be the jump intensity of a single lineage in Ξn. It is the same as in Section 3,
so the total rate of jumps is once again un2βRdV1. Now 1− sn of the jumps will be from
neutral events, and sn of the jumps will be from expansive events. Thus the lineage is
affected by expansive events at rate η, where

η = un2βRdV1sn = usRdV1

which is independent of n. Let
λn = ηkn

which is now no longer independent of n. Note that λn > η.
Let σ2 be as in Section 3.
We now have only one technical requirement. Let α > 0, and let b > 0 be large enough

or T > 0 small enough that

b log

(
eTkη

b

)
+ α + kTη < 0. (6.3)

Finally let
Tn = T log log n and bn = b(log log n)2.

As before we move on to adjusting our analysis of our previous argument.

(i) The maximal number of expansive events, as in Lemma 3.1, is now

P
[
ExpanTn(Ξn) > bn

]
= o((log n)−(α+Tηk) log logn)

To see this, let Zn ∼ Poisson(Tnη). Now bn = O((log log n)2) and Tnη = O(log log n)
so we may (eventually) apply the Chernoff bound to give that

P[Zn > bn] 6

(
eTnη

bn

)bn
,

thus bounding the maximal number of expansive events by

kbnn · P[Zn > bn] =

(
eTnknη

bn

)bn
6

(
eTkη

b

)bn
= o((log n)−(α+Tηk) log logn)

by equation (6.3).

(ii) The probability of having simultaneously marked individuals, as in Proposition 3.2,
is now

P [SimulTn(Ξn)] = o((log n)−α log logn)

To see this, it suffices to show that

k2bn
n · n4β−1 · log log n = o((log n)−α log logn)

which follows by recalling that 4β − 1 < 0.
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(iii) The expected number of lineages, conditioned on NoSimulTn(Ξn), as in Lemma 3.3,
is now bounded by

E [LinTn(Ξn)|NoSimulTn(Ξn)] = exp(η(kn − 1)Tn) 6 (log n)Tηk log logn.

This also bounds the expected number of individuals, as in Corollary 3.4.

(iv) Applying these changes to Proposition 3.6, we find that the approximation to
branching Brownian motion now occurs at rate o((log n)−α log logn).

(v) Adjusting the definition of D2 in Proposition 3.8 to {Nn
t 6 (log n)(α+Tηk) log logn}

gives our overall convergence at rate

O((log n)−α log logn + (log n)(α+Tηk) log logn · ω(4n−β/6bn)).

And so we can now bring these results together, along with Propostion 5.8, to deduce:

Theorem 6.5. Let d ∈ N. Let β ∈ (0, 1/4). Let u ∈ (0, 1), s ∈ (0, 1), R > 0 and T > 0.
Let V1 be the volume of the ball B(0, R) ⊆ Rd. Let η = usRdV1. For n ∈ N, let (kn) be a
sequence on {2, 3, 4, . . .} tending to infinity such that kn = O(log log n).

For each n ∈ N, let

un =
u

n1−2β
and sn =

s

n2β
and Rn =

R

nβ
.

Also let

σ2 =
uRdV1

d
.

Let Πn be a Poisson point process on [0,∞)×Rd with intensity measure ndt⊗nβdx. Let
p0 ∈ Cc(Rd; [0, 1]) be Hölder continuous and nontrivial.

For each n ∈ N, let wn be an SLFVE driven by Πn with parameters (un, sn, Rn, kn).
Then there exists v ∈ C∞((0,∞)×Rd; [0, 1]) ∩C([0,∞)×Rd; [0, 1]) solving the equation{

∂tv = 1
2
∆v + η(1− v),

v(0, x) = p0(x).

such that for all t ∈ [0, T log log n] and x ∈ Rd,∣∣Ep0 [wnt (x)]− v(σ2t, x)
∣∣→ 0

uniformly in t and x as n→∞.
Furthermore we recall Remark 5.9 which gives another description of this v.
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