
Neural Controlled Differential Equations
for Irregular Time Series

Patrick Kidger

Mathematical Institute
University of Oxford

Market Generators 2020



Joint work with...

James Morrill, James Foster, Terry Lyons

MG 2020 Neural CDEs 2



Links

https://github.com/patrick-kidger/NeuralCDE

https://arxiv.org/abs/2005.08926

MG 2020 Neural CDEs 3



Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 4



Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 5



Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 6



Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 7



Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 8



Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 9



Recap
Controlled Differential Equations

MG 2020 Neural CDEs 10



Recap

��
���:

Ordinary

Controlled Differential Equations

(vector field) f : Rw → Rw

MG 2020 Neural CDEs 11



Recap

��
���:

Ordinary

Controlled Differential Equations

(vector field) f : Rw → Rw

(solution) z : [0,T ]→ Rw

MG 2020 Neural CDEs 12



Recap

��
���:

Ordinary

Controlled Differential Equations

(vector field) f : Rw → Rw

(solution) z : [0,T ]→ Rw

(ODE)
dz

dt
(t) = f (z(t))

dX

dt
(t)

z(0) = z0

MG 2020 Neural CDEs 13



Recap

��
���:�

��: Controlled
Ordinary

Controlled Differential Equations

(vector field) f : Rw → Rw

(solution) z : [0,T ]→ Rw

(ODE)
dz

dt
(t) = f (z(t))

dX

dt
(t)

z(0) = z0

MG 2020 Neural CDEs 14



Recap

��
���:�

��: Controlled
Ordinary

Controlled Differential Equations

(control) X : [0,T ]→ Rv

(vector field) f : Rw → Rw

(solution) z : [0,T ]→ Rw

(ODE)
dz

dt
(t) = f (z(t))

dX

dt
(t)

z(0) = z0

MG 2020 Neural CDEs 15



Recap

��
���:�

��: Controlled
Ordinary

Controlled Differential Equations

(control) X : [0,T ]→ Rv

(vector field) f : Rw → Rw×v

(solution) z : [0,T ]→ Rw

(ODE)
dz

dt
(t) = f (z(t))

dX

dt
(t)

z(0) = z0

MG 2020 Neural CDEs 16



Recap

��
���:�

��: Controlled
Ordinary

Controlled Differential Equations

(control) X : [0,T ]→ Rv

(vector field) f : Rw → Rw×v

(solution) z : [0,T ]→ Rw

(ODE)
dz

dt
(t) = f (z(t))

dX

dt
(t)

z(0) = z0

MG 2020 Neural CDEs 17



Recap

��
���:�

��: Controlled
Ordinary

Controlled Differential Equations

(control) X : [0,T ]→ Rv

(vector field) f : Rw → Rw×v

(response) z : [0,T ]→ Rw

(CDE)
dz

dt
(t) = f (z(t))

dX

dt
(t)

z(0) = z0

MG 2020 Neural CDEs 18



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 19



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y

by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 20



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 21



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x)

and
dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 22



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t))

and y ≈ `2
θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 23



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 24



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 25



Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .

MG 2020 Neural CDEs 26



Recap
Neural Ordinary Differential Equations for time series

MG 2020 Neural CDEs 27



Recap
Neural Ordinary Differential Equations for time series

MG 2020 Neural CDEs 28



Neural Controlled Differential Equations
Splines

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t))or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 29



Neural Controlled Differential Equations
Splines

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .

(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t))or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 30



Neural Controlled Differential Equations
Splines

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )

Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t))or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 31



Neural Controlled Differential Equations
Splines

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t))or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 32



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 33



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y

by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 34



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 35



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0)

and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 36



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 37



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t))

or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 38



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).

(once again z is “hidden state”)

MG 2020 Neural CDEs 39



Neural Controlled Differential Equations

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t)) or y ≈ `θ(z(T )).
(once again z is “hidden state”)

MG 2020 Neural CDEs 40



Neural Controlled Differential Equations

z(0) = ζθ(t0, x0),
dz

dt
(t) = fθ(z(t))

dX

dt
(t), y ≈ `θ(z(T ))

MG 2020 Neural CDEs 41



Neural Controlled Differential Equations

z(0) = ζθ(t0, x0),
dz

dt
(t) = fθ(z(t))

dX

dt
(t), y ≈ `θ(z(T ))

MG 2020 Neural CDEs 42



Neural Controlled Differential Equations

z(0) = ζθ(t0, x0),
dz

dt
(t) = fθ(z(t))

dX

dt
(t), y ≈ `θ(z(T ))

MG 2020 Neural CDEs 43



Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.

MG 2020 Neural CDEs 44



Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.

MG 2020 Neural CDEs 45



Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.

MG 2020 Neural CDEs 46



Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.

MG 2020 Neural CDEs 47



Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.

MG 2020 Neural CDEs 48



Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.

MG 2020 Neural CDEs 49



Neural Controlled Differential Equations

— Because it’s an ODE, we can use memory-efficient adjoint
backpropagation.

— Let H be the cost of evaluating one ‘step’ of the
model. Then alternatives (typically RNNs) use O(HT )
memory. Here, we reduce it to just O(H + T ).

— Neural CDEs demonstrate state-of-the-art performance.

MG 2020 Neural CDEs 50



Neural Controlled Differential Equations

— Because it’s an ODE, we can use memory-efficient adjoint
backpropagation.

— Let H be the cost of evaluating one ‘step’ of the
model. Then alternatives (typically RNNs) use O(HT )
memory. Here, we reduce it to just O(H + T ).

— Neural CDEs demonstrate state-of-the-art performance.

MG 2020 Neural CDEs 51



Neural Controlled Differential Equations

— Because it’s an ODE, we can use memory-efficient adjoint
backpropagation.

— Let H be the cost of evaluating one ‘step’ of the
model. Then alternatives (typically RNNs) use O(HT )
memory. Here, we reduce it to just O(H + T ).

— Neural CDEs demonstrate state-of-the-art performance.

MG 2020 Neural CDEs 52



Results!
CharacterTrajectories

MG 2020 Neural CDEs 53



Results!
Speech Commands

MG 2020 Neural CDEs 54



Summary

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.

MG 2020 Neural CDEs 55



References

T. Lyons, M. Caruana, and T. Levy, Differential equations driven by rough paths.
Springer, 2004. École d’Été de Probabilités de Saint-Flour XXXIV - 2004

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural Ordinary
Differential Equations,” in Advances in Neural Information Processing Systems 31, pp.
6571–6583, Curran Associates, Inc., 2018.

Y. Rubanova, T. Q. Chen, and D. K. Duvenaud, “Latent Ordinary Differential
Equations for Irregularly-Sampled Time Series,” in Advances in Neural Information
Processing Systems 32, pp. 5320–5330, Curran Associates, Inc., 2019

MG 2020 Neural CDEs 56


