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Summary
Neural Controlled Differential Equations

— New tool for time series

— Acts directly on irregularly sampled partially observed
multivariate time series.

— Can be trained with memory-efficient adjoint
backpropagation, even across observations

— Straightforward to implement with existing tools.

— Demonstrates state-of-the-art performance.
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Recap
Neural Ordinary Differential Equations

Goal: learn a map x 7→ y by learning a function fθ and linear maps
`1
θ, `2

θ such that

z(0) = `1
θ(x) and

dz

dt
(t) = fθ(z(t)) and y ≈ `2

θ(z(T )).

z is “hidden state”.

Have an efficient training algorithm (adjoint backpropagation) that
uses O(1) memory in the time horizon T .
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Recap
Neural Ordinary Differential Equations for time series
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Neural Controlled Differential Equations
Splines

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
(WLOG t0 = 0, tn = T )
Let X : [t0, tn] = [0,T ]→ Rv be the natural cubic spline
interpolation of this data, so X (ti ) = (xi , ti ).

Goal: learn a map x 7→ y by learning functions ζθ, fθ and a linear
map `θ such that

z(0) = ζθ(t0, x0) and
dz

dt
(t) = fθ(z(t))

dX

dt
(t),

and y(t) ≈ `θ(z(t))or y ≈ `θ(z(T )).
(once again z is “hidden state”)
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Neural Controlled Differential Equations

— Using a continuous-time theory pushes the problem of
messy data into the spline interpolation, which is better suited
for handling it. It doesn’t need to affect the architecture of
our model.

— Fixes a leaky abstraction.

— Makes batching easy.

— The equation dz
dt (t) = fθ(z(t)) dX

dt (t) is still an ODE, so we
can solve it with the same tools as for Neural ODEs.

— In particular with the same software, hassle-free.
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Neural Controlled Differential Equations

— Because it’s an ODE, we can use memory-efficient adjoint
backpropagation.

— Let H be the cost of evaluating one ‘step’ of the
model. Then alternatives (typically RNNs) use O(HT )
memory. Here, we reduce it to just O(H + T ).

— Neural CDEs demonstrate state-of-the-art performance.
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Results!
CharacterTrajectories
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Results!
Speech Commands
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