

Neural Controlled Differential Equations for Irregular Time Series

Patrick Kidger

Mathematical Institute University of Oxford

Market Generators 2020

Oxford Mathematics

James Morrill, James Foster, Terry Lyons

Links

https://github.com/patrick-kidger/NeuralCDE https://arxiv.org/abs/2005.08926

Neural Controlled Differential Equations

Oxford Mathematics

Neural Controlled Differential Equations

New tool for time series

Neural Controlled Differential Equations

- New tool for time series
- Acts directly on irregularly sampled partially observed multivariate time series.

Neural Controlled Differential Equations

- New tool for time series
- Acts directly on irregularly sampled partially observed multivariate time series.
- Can be trained with memory-efficient adjoint backpropagation, even across observations

- New tool for time series
- Acts directly on irregularly sampled partially observed multivariate time series.
- Can be trained with memory-efficient adjoint backpropagation, even across observations
- Straightforward to implement with existing tools.

- New tool for time series
- Acts directly on irregularly sampled partially observed multivariate time series.
- Can be trained with memory-efficient adjoint backpropagation, even across observations
- Straightforward to implement with existing tools.
- Demonstrates state-of-the-art performance.

Controlled Differential Equations

(vector field) $f: \mathbb{R}^w \to \mathbb{R}^w$

(vector field) $f: \mathbb{R}^w \to \mathbb{R}^w$

(solution) $z: [0, T] \to \mathbb{R}^w$

$$\begin{array}{ll} \text{(vector field)} & f: \mathbb{R}^w \to \mathbb{R}^w \\ & \text{(solution)} & z\colon [0,T] \to \mathbb{R}^w \\ & \text{(ODE)} & \frac{\mathrm{d}z}{\mathrm{d}t}(t) = f(z(t)) \\ & z(0) = z_0 \end{array}$$

$$\begin{array}{ll} \text{(vector field)} & f: \mathbb{R}^w \to \mathbb{R}^w \\ & \text{(solution)} & z\colon [0,T] \to \mathbb{R}^w \\ & \text{(ODE)} & \frac{\mathrm{d}z}{\mathrm{d}t}(t) = f(z(t)) \\ & z(0) = z_0 \end{array}$$

$$\begin{array}{ll} \text{(control)} & X \colon [0,T] \to \mathbb{R}^{\nu} \\ \text{(vector field)} & f \colon \mathbb{R}^{w} \to \mathbb{R}^{w} \\ \text{(solution)} & z \colon [0,T] \to \mathbb{R}^{w} \\ \\ \text{(ODE)} & \frac{\mathrm{d}z}{\mathrm{d}t}(t) = f(z(t)) \\ z(0) = z_{0} \end{array}$$

Neural Ordinary Differential Equations

Neural Ordinary Differential Equations

Goal: learn a map $x \mapsto y$

Neural Ordinary Differential Equations

Neural Ordinary Differential Equations

$$z(0) = \ell_{\theta}^{1}(x)$$

Neural Ordinary Differential Equations

$$z(0) = \ell_{\theta}^{1}(x)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t))$

Neural Ordinary Differential Equations

$$z(0) = \ell_{\theta}^1(x)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t))$ and $y \approx \ell_{\theta}^2(z(T))$.

Neural Ordinary Differential Equations

Goal: learn a map $x\mapsto y$ by learning a function f_θ and linear maps ℓ^1_θ , ℓ^2_θ such that

$$z(0) = \ell_{\theta}^1(x)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t))$ and $y \approx \ell_{\theta}^2(z(T))$.

z is "hidden state".

Goal: learn a map $x\mapsto y$ by learning a function f_θ and linear maps ℓ^1_θ , ℓ^2_θ such that

$$z(0) = \ell_{\theta}^1(x)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t))$ and $y \approx \ell_{\theta}^2(z(T))$.

z is "hidden state".

Have an efficient training algorithm (adjoint backpropagation) that uses $\mathcal{O}(1)$ memory in the time horizon \mathcal{T} .

Neural Ordinary Differential Equations for time series

Neural Ordinary Differential Equations for time series

Splines

Splines

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$.

Splines

Observe
$$\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$$
 with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0, t_n = T$)

OXFORD Mathematica

Splines

Observe
$$\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$$
 with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0$, $t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Observe
$$\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$$
 with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0, t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Observe
$$\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$$
 with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0$, $t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x} \mapsto y$

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0$, $t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x}\mapsto y$ by learning functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0$, $t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x} \mapsto \mathbf{y}$ by learning functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

$$z(0) = \zeta_{\theta}(t_0, x_0)$$

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0, t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x}\mapsto y$ by learning functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

$$z(0) = \zeta_{\theta}(t_0, x_0)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t)$,

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0$, $t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x}\mapsto y$ by learning functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

$$z(0) = \zeta_{\theta}(t_0, x_0)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t),$

and $y(t) \approx \ell_{\theta}(z(t))$

MG 2020

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$.

 $(\mathsf{WLOG}\ t_0 = 0,\ t_n = T)$

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x}\mapsto y$ by learning functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

$$z(0) = \zeta_{\theta}(t_0, x_0)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t)$,

and $y(t) \approx \ell_{\theta}(z(t))$ or $y \approx \ell_{\theta}(z(T))$.

Observe $\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$ with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^v$. (WLOG $t_0 = 0$, $t_n = T$)

Let $X: [t_0, t_n] = [0, T] \to \mathbb{R}^v$ be the natural cubic spline interpolation of this data, so $X(t_i) = (x_i, t_i)$.

Goal: learn a map $\mathbf{x}\mapsto y$ by learning functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

$$z(0) = \zeta_{\theta}(t_0, x_0)$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t)$,

and $y(t) \approx \ell_{\theta}(z(t))$ or $y \approx \ell_{\theta}(z(T))$. (once again z is "hidden state")

$$z(0) = \zeta_{\theta}(t_0, x_0), \qquad \frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t), \qquad y \approx \ell_{\theta}(z(T))$$

$$z(0) = \zeta_{\theta}(t_0, x_0), \qquad \frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t), \qquad y \approx \ell_{\theta}(z(T))$$

42

$$z(0) = \zeta_{\theta}(t_0, x_0), \qquad \frac{\mathrm{d}z}{\mathrm{d}t}(t) = f_{\theta}(z(t)) \frac{\mathrm{d}X}{\mathrm{d}t}(t), \qquad y \approx \ell_{\theta}(z(T))$$

43

— Using a continuous-time theory pushes the problem of messy data into the spline interpolation, which is better suited for handling it. It doesn't need to affect the architecture of our model.

- Using a continuous-time theory pushes the problem of messy data into the spline interpolation, which is better suited for handling it. It doesn't need to affect the architecture of our model.
 - Fixes a leaky abstraction.

Neural CDEs

- Using a continuous-time theory pushes the problem of messy data into the spline interpolation, which is better suited for handling it. It doesn't need to affect the architecture of our model.
 - Fixes a leaky abstraction.
 - Makes batching easy.

MG 2020

- Using a continuous-time theory pushes the problem of messy data into the spline interpolation, which is better suited for handling it. It doesn't need to affect the architecture of our model
 - Fixes a leaky abstraction.
 - Makes batching easy.
- The equation $\frac{dz}{dt}(t) = f_{\theta}(z(t)) \frac{dX}{dt}(t)$ is still an ODE, so we can solve it with the same tools as for Neural ODEs.

- Using a continuous-time theory pushes the problem of messy data into the spline interpolation, which is better suited for handling it. It doesn't need to affect the architecture of our model
 - Fixes a leaky abstraction.
 - Makes batching easy.
- The equation $\frac{dz}{dt}(t) = f_{\theta}(z(t)) \frac{dX}{dt}(t)$ is still an ODE, so we can solve it with the same tools as for Neural ODEs.
 - In particular with the same software, hassle-free.

— Because it's an ODE, we can use memory-efficient adjoint backpropagation.

- Because it's an ODE, we can use memory-efficient adjoint backpropagation.
- Let H be the cost of evaluating one 'step' of the model. Then alternatives (typically RNNs) use $\mathcal{O}(HT)$ memory. Here, we reduce it to just $\mathcal{O}(H+T)$.

- Because it's an ODE, we can use memory-efficient adjoint backpropagation.
- Let H be the cost of evaluating one 'step' of the model. Then alternatives (typically RNNs) use $\mathcal{O}(HT)$ memory. Here, we reduce it to just $\mathcal{O}(H+T)$.
- Neural CDEs demonstrate state-of-the-art performance.

Results!

CharacterTrajectories

Test accuracy (mean \pm std, computed across five runs) and memory usage on CharacterTrajectories. Memory usage is independent of repeats and of amount of data dropped.

Model	Test Accuracy			Memory
	30% dropped	50% dropped	70% dropped	usage (MB)
GRU-ODE	$89.9\% \pm 8.4\%$	$89.6\% \pm 5.6\%$	$86.6\% \pm 3.5\%$	1.5
GRU- Δt	$94.4\% \pm 1.7\%$	$92.0\% \pm 1.0\%$	$91.1\% \pm 1.1\%$	15.6
GRU-D	$93.2\% \pm 2.0\%$	$92.7\% \pm 2.8\%$	$90.8\% \pm 2.1\%$	16.9
ODE-RNN	$97.9\% \pm 0.4\%$	$97.5\% \pm 0.6\%$	$96.7\% \pm 0.9\%$	14.7
Neural CDE (ours)	99.2% \pm 0.3%	99.3% \pm 0.3%	99.4% \pm 0.4%	1.3

Results!

Speech Commands

Test Accuracy (mean \pm std, computed across five runs) and memory usage on Speech Commands. Memory usage is independent of repeats.

Model	Test Accuracy	Memory usage (GB)
GRU-ODE	$47.9\% \pm 2.9\%$	0.164
GRU- Δt	$43.3\% \pm 33.9\%$	1.54
GRU-D	$32.4\% \pm 34.8\%$	1.64
ODE-RNN	$65.9\% \pm 35.6\%$	1.40
Neural CDE (ours)	$89.8\% \pm 2.5\%$	0.167

- New tool for time series
- Acts directly on irregularly sampled partially observed multivariate time series.
- Can be trained with memory-efficient adjoint backpropagation, even across observations
- Straightforward to implement with existing tools.
- Demonstrates state-of-the-art performance.

References

T. Lyons, M. Caruana, and T. Levy, *Differential equations driven by rough paths*. Springer, 2004. École d'Été de Probabilités de Saint-Flour XXXIV - 2004

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, "Neural Ordinary Differential Equations," in *Advances in Neural Information Processing Systems 31*, pp. 6571–6583, Curran Associates, Inc., 2018.

Y. Rubanova, T. Q. Chen, and D. K. Duvenaud, "Latent Ordinary Differential Equations for Irregularly-Sampled Time Series," in *Advances in Neural Information Processing Systems 32*, pp. 5320–5330, Curran Associates, Inc., 2019

