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1 Purpose

Our primary aim is to provide a concise account of Mergelyan’s Theorem: setting it
in context, and providing both complex analytic and functional analytic proofs which
work from the fundamentals; no such account yet exists in the literature.

We begin by presenting the complex analytic proof, which is rooted in classical
analysis, primarily following the structure of [21, Chapter 20]. But Mergelyan’s The-
orem can also be viewed as a problem in functional analysis, in particular on function
algebras, and it is here that the problem finds a natural home. A proof is given in
[11], but this account relies on a corpus of abstract theory and ancillary results. We
present the shortest possible trip through the theory in order to prove Mergelyan’s
Theorem, drawing in particular on [8].

Our main sources are often terse, and written at a high level for one already
familiar with the theory; our significant contribution is to produce proofs – including
several entire lemmas – that fill in the (many) details left unproved and unreferenced.
We also cover the necessary background material. Our goal is to produce an account
which may be appreciated by the advanced undergraduate with a strong background
in complex analysis, functional analysis, and abstract measure theory.

Along the way we shall encounter and prove many important results, such as the
Tietze Extension Theorem, Runge’s Theorem, the Lebesgue Decomposition Theorem,
the Walsh–Lebesgue Theorem, and an abstract form of the F. and M. Riesz Theorem.
In the final section we provide a brief survey of some further results.

It is the author’s sincere hope that by the end, the reader will share our fascination
with this topic.
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2 Preliminaries

2.1 Context

The problem of approximating certain classes of functions by those of simpler classes
is the concern of ‘approximation theory’, which in general has many different aspects.
With what functions can we approximate what functions? Over which sets? In what
fashion do they converge, and how fast? What is the optimal approximant subject
to certain constraints? (For example, that an approximating polynomial must be of
order at most n.) More esoteric concerns exist too, see [22, Section 0]. We focus on
the first two questions – in particular, the problem of uniformly approximating by
polynomials on compact subsets of the complex plane.

Which functions might we hope to approximate? Polynomials are continuous; their
uniform limit will be also. So at the very least we must restrict attention to continuous
functions. Indeed, in 1885, Weierstrass proved one of the first results of this form,
the now-classical Weierstrass Approximation Theorem. This may be generalised, for
example by the Stone–Weierstrass Theorem, but we might also seek to generalise in
other ways: in particular, to generalise the domain under consideration; the natural
generalisation is to compact subsets of the complex plane. But generalising so broadly
does not come for free: polynomials are holomorphic functions; their uniform limit
will be also. Thus it is necessary to restrict attention to those functions which are
holomorphic in the interior of the domain, a condition which was trivially satisfied in
the Weierstrass Approximation Theorem – when the domain, viewed as a subset of
the compex plane, lacked an interior.

One other condition is also needed, which is that the complement of the domain
must be connected. The necessity of this condition is a little less obvious. If f
is uniformly approximated on the domain by polynomials (Pn), then the maximum
principle implies that (Pn) converges uniformly (to a holomorphic function) on all
bounded connected components of the complement of the domain: this then defines
a holomorphic extension of f . Hence in particular, any function lacking such a holo-
morphic extension (for example, it might have a pole in one of the bounded connected
components of the complement) cannot be approximated by polynomials. Thus we
reduce to the case of connected complement.

Whilst all of these conditions are necessary, it is not at all obvious that they are
sufficient. Mergelyan’s Theorem asserts that they are:

Mergelyan’s Theorem. Let K ⊆ C be compact, and such that C \K is connected.
Then f is uniformly approximable on K by polynomials in z if and only if f is con-
tinuous on K and holomorphic in the interior of K.

This was first proved by Mergelyan [20, Theorem 1.4] in 1951 (published in 1952),
and offers a complete solution to the problem of polynomial approximation in the
complex plane.

There is an important precursor to Mergelyan’s Theorem, called Runge’s Theorem,
which gives sufficient but not necessary conditions for polynomial approximation on
the domain K: that the function to be approximated should be holomorphic on some
slightly larger region Ω, open and containing K. It is to Runge’s Theorem that the
concluding step of Mergelyan’s Theorem appeals.
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Historically, a great many theorems have stood between those of Weierstrass and
Mergelyan. Walsh generalised the Weierstrass approximation theorem to domains
which are arbitrary Jordan curves not separating the plane, which was further gen-
eralised in 1930 by Hartogs and Rosenthal, who removed the topological restriction.
It was in 1934 that Lavrent’ev gave the complete solution to polynomial approxima-
tion of continuous functions, by showing that it be necessary and sufficient that the
domain be nowhere dense and not separate the plane, see [11, Chapter II, Theorem
8.7]. See [20, Section 1] for historical references.

The question still remained open, however, regarding those domains that have
nonempty interior. Conditions on the smoothness of the boundary proved important,
tying in to the theory of conformal maps. For instance, in 1926, Walsh proved an
approximation result for those regions whose boundary was homeomorphic to a circle.
In 1945, Keldysh proved that it was sufficient that the domain be the closure of some
bounded region on which the function of interest is analytic. Many more exotic
conditions were also shown to be sufficient, again [20, Section 1] provides historical
references. Mergelyan’s Theorem supersedes them all.

The condition that the complement of the domain should be connected remains
unsatisfying, and it is here that the theory continues to develop; Mergelyan’s Theorem
only scratches the surface. Consider now the case when the complement of the domain
is not connected. Our above discussion shows that it is certainly insufficient to consider
approximation by polynomials. Instead, it turns out that the appropriate objects
of study are rational functions, that is, a quotient of two polynomials. Many of
the polynomial approximation results may be generalised to rational functions: for
example, the version of Runge’s Theorem that we present here is actually a restricted
version of the usual ‘Runge’s Theorem’, which allows for domains whose complement
is disconnected. However, not every result can be generalised as completely as we may
hope – in particular, Mergelyan’s Theorem does not generalise to arbitrary compact
sets, and in general, the question of rational approximation still remains open. We
provide a brief exposition of some results on rational approximation at the end of this
paper; see Section 5.

Of course, we may continue to generalise our problem in other ways: why should
we restrict ourselves to domains in C? We might reasonably consider domains in Cn

(or on Riemann surfaces). Here we begin to enter the realm of the theory of several
complex variables, for which even the question of polynomial approximation remains
open. See perhaps [26, Section 8].

2.2 Notations and Definitions

For completeness’ sake we list some of the standard notation that we use.

(i) The extended real line is denoted R = R ∪ {−∞,∞}. The Riemann sphere is

denoted Ĉ = C ∪ {∞}.

(ii) Let E ⊆ Ĉ. Then E◦ denotes the interior of E.

(iii) Let E ⊆ C be nonempty, z ∈ C, and f : E → C. Then dist(z, E) denotes the
distance from z to E, diam(E) denotes the diameter of E, and supp(f) denotes
the support of f .
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(iv) Let γ : [0, 1]→ C be a simple closed path. Then int(γ) denotes the interior of γ.

(v) Let E ⊆ Ĉ be open. Then H(E) denotes the set of all functions f : Ĉ → C
which are holomorphic in E.

(vi) Let E ⊆ Ĉ. Then CR(E), C(E) denote the spaces of all real valued, respec-
tively complex valued, continuous functions f : E → C, equipped with the
supremum norm. Further, Cc(E) denotes the subspace of C(E) consisting of
those functions whose support is compact, and Ck(E) denotes the subspace
of C(E) consisting of those functions which are k-times continuously differ-
entiable. (They do not necessarily have complex derivatives.) These have
intersection Ck

c (E) = Cc(E) ∩ Ck(E). Finally, A(E) is the subspace of C(E)
consisting of its intersection with H(E◦).

(vii) Let z ∈ C, and δ > 0. Then B(z, δ) denotes the open disc in C centred on z,
with radius δ. Further, B′(z, δ) will denote the punctured disc, and B(z, δ) will
denote the closed disc.

(viii) The Laplace operator is denoted ∆ = ∂2

∂x2
+ ∂2

∂y2
.

Definition 2.2.1. Let K ⊆ C be compact. Then let P (K) denote the set of all
functions f : K → C which are uniform limits on K of polynomials in z.

Definition 2.2.2. The Wirtinger derivative ∂z̄ is defined by

∂z̄ =
1

2

(
∂

∂x
+ i

∂

∂y

)
=

1

2
eiθ

(
∂

∂r
+

i

r

∂

∂θ

)
.

For f a holomorphic function, the Cauchy–Riemann equations imply that ∂z̄f = 0.

2.3 Initial Results

We begin by proving a few miscellaneous results which will be of use to both the
complex analytic and the functional analytic approaches. These results are mostly
elementary, we follow [21, Theorem 20.3] and [15]. The proof of the Tietze Extension
Theorem is standard, we follow [21, Theorem 20.4].

Lemma 2.3.1. Let Φ ∈ C1
c (C). Then the following formula holds, with w = ζ + iη:

Φ(z) = − 1

π

∫∫
C

(∂z̄Φ)(w)

w − z
dζ dη.
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Proof. Fix z and let w = z + reiθ. Then using the polar description of ∂z̄,

− 1

π

∫∫
C

(∂z̄Φ)(w)

w − z
dζ dη = − 1

π

∫∫
C

(∂z̄Φ)(w)

reiθ
· r dr dθ

= − 1

2π

∫ 2π

0

∫ ∞
0

(
∂

∂r
+

i

r

∂

∂θ
)(Φ)(w) dr dθ

= − 1

2π

∫ 2π

0

∫ ∞
0

∂Φ

∂r
(w) dr dθ

= − 1

2π

∫ 2π

0

[
Φ(z + reiθ)

]∞
0

dθ

= Φ(z).

The third line uses that Φ is 2π periodic in θ to conclude that the integral of ∂Φ
∂θ

is
zero, and the fifth line uses compact support to get that Φ is zero at infinity.

Lemma 2.3.2. Let K ⊆ C be compact. Suppose that λ ∈ C and f, g ∈ P (K). Then
f+g, fg, λf ∈ P (K). Suppose instead that hn ∈ P (K) for all n ∈ N, and that hn → h
as n→∞, uniformly on K. Then h ∈ P (K).

This is trivial to show; the proof is omitted. The lemma is essentially stating
that P (K) is a closed subalgebra of C(K). (In fact it is a commutative Banach
algebra, see [21, Chapter 18], or [26].)

Lemma 2.3.3 (Pole-pushing lemma). Let K ⊆ C be compact, and such that C \K
is connected. For α ∈ C, let hα(z) = 1/(α−z). Then α /∈ K implies that hα ∈ P (K).

Proof. Let X = {α ∈ C \K : hα ∈ P (K)}. We will show that X = C \K.
For α such that |α| > |z|, expand hα(z) by the geometric series formula to give

that

hα(z) =
1

α− z
=

1

α
(1 +

z

α
+
z2

α2
+ · · · ).

This sum is uniformly convergent in B(0, 1
2
|α|), say. As K is bounded, α may be

chosen sufficiently large so that K ⊆ B(0, 1
2
|α|), and hence that α ∈ X for such α. So

in particular, X is nonempty.
Now let α ∈ X and suppose β ∈ C \K is such that |α− β| < dist(α,K). As

hα ∈ P (K), repeated applications of Lemma 2.3.2 give that gN defined by

gN(z) = 1 +
α− β
α− z

+
(α− β)2

(α− z)2
+ · · ·+ (α− β)N

(α− z)N

is such that gN ∈ P (K). Now again expand according to the geometric series formula,
to give that

hβ(z) =
1

(α− z)(1− α−β
α−z )

=
1

α− z
(1 +

α− β
α− z

+
(α− β)2

(α− z)2
+ · · · ) =

1

α− z
lim
N→∞

gN(z).

By choice of β, this sum is uniformly convergent in K. So Lemma 2.3.2 gives that
hβ ∈ P (K) also, and so β ∈ X. Thus we have shown that β ∈ C \ K, α ∈ X and
|α− β| < dist(α,K) together imply that β ∈ X.
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Now pick any β ∈ C \K. Since C \K is open and connected, it is path connected,
so there exists some path γ from α to β in C \K. The image of γ is compact and
disjoint from K, hence there is some positive distance between them. Let δ > 0
be half this distance. As γ is uniformly continuous, there exists some finite set of
points tj such that 0 = t0 < t1 < · · · < tm = 1, and such that |γ(tj)− γ(tj+1)| < δ for
all j < m. Now γ(t0) = α ∈ X, and |γ(t0)− γ(t1)| < δ < dist(α,K), so by what we
have just shown, γ(t1) ∈ X also. Repeat to get that γ(tj) ∈ X for all j, and hence
that in particular β = γ(tm) ∈ X. Hence X = C \K.

Remark 2.3.4. It follows from this result that all rational functions with poles off K
are in P (K). This fact will prove useful later, in Section 5. We have essentially
‘pushed’ their poles to ∞. More general pole-pushing results exist, see [16, Lemma
12.1.6].

Lemma 2.3.5 (Urysohn’s Lemma). Let K ⊆ C be compact. Let U ⊆ C be open
and contain K. Then there exists f ∈ CR(C), with support in U , such that 1K(z) 6
f(z) 6 1U(z) for all z ∈ C.

Proof. Define f by

f(z) =
dist(z,C \ U)

dist(z,K) + dist(z,C \ U)
.

It is clear that this has the required properties.

Theorem 2.3.6 (Tietze Extension Theorem, Real Case). Let K ⊆ C be compact,
and let f ∈ CR(K). Then there exists F ∈ Cc(C), real valued, such that F |K = f .
Furthermore sup

z∈C
|F (z)| = sup

z∈K
|f(z)|, and inf

z∈C
|F (z)| = inf

z∈K
|f(z)|.

Proof. As its domain is compact, f must be bounded. By rescaling, assume without
loss of generality that inf

z∈K
|f(z)| = −1 and sup

z∈K
|f(z)| = 1. Let Ω ⊆ C be open,

bounded, and contain K. Let

K+ = {z ∈ K : f(z) >
1

3
},

K− = {z ∈ K : f(z) 6 −1

3
}.

Then these are disjoint compact subsets of Ω, so as a consequence of Urysohn’s
Lemma, there exists f1 ∈ C(C), with support in Ω, such that f1(z) = ±1

3
for z ∈ K±,

and such that −1
3
6 f(z) 6 1

3
for all z ∈ Ω. Thus for z ∈ K and w ∈ Ω,

|f(z)− f1(z)| 6 2

3
,

|f1(w)| 6 1

3
.

This construction may be repeated with f − f1 in place of f , to similarly generate
an f2. Inductively repeat this to produce a sequence (fn), such that for z ∈ K and
w ∈ Ω,
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∣∣∣∣∣f(z)−
n∑
i=1

fi(z)

∣∣∣∣∣ 6
(

2

3

)n
, (1)

|fn(w)| 6 1

3
·
(

2

3

)n−1

. (2)

Then F may be defined to be
∑∞

i=1 fi on Ω, and zero in C \ Ω. By (2) this sum
converges uniformly on Ω, so F is continuous. Each fn has support in Ω, hence F
has support in Ω. And (1) guarantees that F converges to f in K. Finally, (2) also
implies that sup

z∈C
|F (z)| = 1 = sup

z∈K
|f(z)| and inf

z∈C
|F (z)| = −1 = inf

z∈K
|f(z)|.

Theorem 2.3.7 (Tietze Extension Theorem). Let K ⊆ C be compact, and let f ∈
C(K). Then there exists F ∈ Cc(C) such that F |K = f .

Proof. Apply the real case of the Tietze Extension Theorem to Re(f) and Im(f) to
find u, v ∈ Cc(C) real valued such that u|K = Re(f) and v|K = Im(f). Then it is
clear that F defined by F = u+ iv has the necessary properties.

Remark 2.3.8. In the context of metric spaces, Urysohn’s Lemma is essentially a
triviality – we state it separately only so that we may use it later. However, both
Urysohn’s Lemma and the Tietze Extension Theorem are in fact topological results,
holding on locally compact Hausdorff spaces. In this case, Urysohn’s Lemma becomes
somewhat more difficult to prove. The proof of the Tietze Extension Theorem carries
through without any changes. It is possible to avoid Urysohn’s Lemma and find a
metric-spaces-only proof of the Tietze Extension Theorem, see [10, Exercise 4.1.F],
which references [18]. This uses a construction due to Hausdorff, but the proof is
somewhat fiddly.

3 Complex Analytic Proof

It was a classical complex analytic proof that was first provided by Mergelyan [20],
which has since been refined into the version we provide here. We primarily use [21,
Chapter 20], see also [16, Theorem 12.2.1] for an alternative presentation.

3.1 Complex Analytic Preliminaries

We begin by stating a few definitions and standard results, without proof. Consult
[21, Theorem 14.14] or [16, Theorem 13.1.6] for a proof of the Koebe 1

4
Theorem;

consult [21, Theorem 14.8] or [16, Section 6.7] for a proof of the Riemann Mapping
Theorem.

Definition 3.1.1. Let z ∈ C and r > 0. Then Γ(z, r) is the circle with centre z and
radius r, oriented anticlockwise.

Definition 3.1.2. A curve shall be taken to mean a continuous, piecewise continu-
ously differentiable function from [0, 1] to C, or the image of such a function.
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Definition 3.1.3. Let E ⊆ C. Define the modulus of continuity ω of some func-
tion f : E → C to be

ω(δ) = sup{|f(z1)− f(z2)| : z1, z2 ∈ E, |z1 − z2| < δ}.

Note that ω(δ)→ 0 as δ → 0 if and only if f is uniformly continuous on E.

Theorem 3.1.4 (Koebe 1
4

Theorem). Suppose f ∈ H(B(0, 1)) is injective and such
that f(0) = 0 and f ′(0) = 1. Then B(0, 1

4
) ⊆ f(B(0, 1)).

Theorem 3.1.5 (Riemann Mapping Theorem). Let Ω ⊆ Ĉ be open, simply connected,

and such that Ĉ \ Ω contains at least two distinct points. Then there exists a conformal
(biholomorphic) map from B(0, 1) to Ω.

3.2 Runge’s Theorem

We begin by proving Runge’s Theorem (also occasionally known as the Runge–Walsh
Theorem) following [15], see also [16, Proposition 12.1.5]. Runge’s Theorem may be
viewed as the motivation behind Mergelyan’s Theorem: it gives sufficient conditions
for uniform approximation by polynomials, in particular that our function be holo-
morphic on a slightly larger set. Mergelyan’s Theorem then shows that sufficient and
necessary conditions are actually slightly weaker than that.

Lemma 3.2.1. Let K ⊆ C be compact, and let F : K × [0, 1] → C be continuous.
Then G(z) defined by

G(z) =

∫ 1

0

F (z, t) dt

may be uniformly approximated on K as N →∞ by GN(z) defined by

GN(z) =
1

N

N−1∑
k=0

F (z,
k

N
).

Proof. It is clear from the definition of G and GN that

|G(z)−GN(z)| 6 sup{|F (z, x)− F (z, y)| : x, y ∈ [0, 1], |x− y| 6 1

N
}.

Furthermore, as K × [0, 1] is compact, F is uniformly continuous; let F have
modulus of continuity ω. Then

sup
z∈K
|G(z)−GN(z)| 6 sup{|F (z, x)− F (z, y)| : x, y ∈ [0, 1], |x− y| 6 1

N
, z ∈ K}

6 ω(
1

N
).

This tends to zero as N →∞. Hence GN uniformly approximates G.

Theorem 3.2.2 (Runge’s Theorem). Let K ⊆ C be compact, and such that C \K is
connected. Suppose that Ω is an open set containing K, such that f ∈ H(Ω). Then
f ∈ P (K).
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K K

Ω

Figure 1: Runge’s Theorem square contours (square side length not to scale)

Proof. As K is compact and C \ Ω is closed, δ = inf
z∈K

dist(z,C \Ω) is such that δ > 0.

Now take a grid of squares of side length δ/10, say. Let γ1, . . . , γn be the boundaries of
those squares that intersect K, treated as contours oriented anticlockwise. There are
a finite number of these, as K is compact. We include those squares that intersect K
only at their boundary. So all γj are in Ω. See Figure 1 for an example where K is
disconnected.

Now fix z ∈ K. Suppose z lies in the interior of a square; so z ∈ int(γi) for one
particular i. Then by Cauchy’s Formula,

f(z) =
1

2πi

∮
γi

f(w)

w − z
dw.

And for j 6= i, by Cauchy’s Theorem,

0 =
1

2πi

∮
γj

f(w)

w − z
dw

as f(w)/(w − z) will be holomorphic there. Hence for all such z,

f(z) =
1

2πi

n∑
j=1

∮
γj

f(w)

w − z
dw.

This statement is also true for those z ∈ K that lie on the edges of our squares, by
applying Cauchy’s Formula to the rectangular contour formed by taking the union of
the square contours either side, and removing their common edge (on which z lies).
Similarly, the statement is true for those z ∈ K that lie on the boundary of four
squares, at their common corner.
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So now remove every edge that is shared by two γj to form a collection of edges
E1, . . . , Em, disjoint from K. So for all z ∈ K,

f(z) =
1

2πi

m∑
j=1

∫
Ej

f(w)

w − z
dw

=
1

2πi

m∑
j=1

Fj(z), (3)

where Fj : K → C is defined by

Fj(z) =

∫ 1

0

Gj(z, t) dt

and Gj : K × [0, 1]→ C is defined by

Gj(z, t) =
f(Ej(t))

Ej(t)− z
E ′j(t).

Now the Gj are continuous, so by Lemma 3.2.1, each Fj may be uniformly ap-
proximated (as N →∞) by Fj,N defined by

Fj,N(z) =
1

N

N−1∑
k=0

G(z,
k

N
)

=
1

N

N−1∑
k=0

f(Ej(
k
N

))

Ej(
k
N

)− z
E ′j(

k

N
)

=
1

N

N−1∑
k=0

f(Ej(
k

N
))E ′j(

k

N
)hEj( k

N
)(z),

where we recall that hα(z) = 1/(α − z), as defined in the pole-pushing lemma
(Lemma 2.3.3).

Now each Ej is disjoint from K, so Ej(
k
N

) /∈ K for all k ∈ {0, . . . , N − 1}. Hence
by the pole-pushing lemma (Lemma 2.3.3), hEj(k/N) ∈ P (K).

Thus by repeated application of Lemma 2.3.2, Fj,N ∈ P (K) also. Apply the lemma
again, using the fact that Fj,N → Fj uniformly as N → ∞, to get that Fj ∈ P (K)
also. A final application of the same lemma to (3) then gives that f ∈ P (K) as
well.

3.3 Mergelyan’s Theorem

Now that we have the Tietze Extension Theorem and Runge’s Theorem in hand, we
are ready to move on to tackling Mergelyan’s Theorem. Proving this requires some
perseverance. We begin by extending our function of interest f to the whole complex
plane, via the Tietze Extension Theorem. We then smooth it out by convolving with a
mollifier, to construct a function Φ that approximates f , and is ‘almost holomorphic’
on the whole plane. This is then used to construct a function F that is holomorphic

10



on a slightly larger set, and approximates Φ. Finally it is to F that we apply Runge’s
Theorem.

Thus it is a consequence of the proof of Mergelyan’s Theorem that it is possible
to uniformly approximate functions holomorphic on a compact set by functions which
are holomorphic on a slightly larger set, also see [11, Chapter VIII, Theorem 7.4].

Lemma 3.3.1. Fix δ > 0 and let s : R>0 → R>0 be defined by

s(r) =


3

πδ2
(1− r2

δ2
)2 for 0 6 r 6 δ,

0 for r > δ.

Also define S : C→ R>0 by S(z) = s(|z|).
Then S ∈ C1

c (C), and satisfies the following properties, with z = x+ iy:

S(z) = 0 for |z| > δ, (4)∫∫
C
S(z) dx dy = 1, (5)∫∫

C
∂z̄S(z) dx dy = 0, (6)∫∫

C
|∂z̄S(z)| dx dy =

24

15δ
<

2

δ
. (7)

Proof. By substituting r2 = x2 + y2 into the definition of s, it is clear that S has
continuous partial derivatives in x and y.1 Hence S ∈ C1

c (C) as we also have compact
support. Furthermore (4) is immediate from the definition.

We simply compute (5), with z = reiθ:∫∫
C
S(z) dx dy =

∫ 2π

0

∫ ∞
0

S(reiθ)r dr dθ

= 2π

∫ δ

0

s(r)r dr

=

∫ δ

0

6

δ2
r(1− r2

δ2
)2 dr

= 1.

Next, (6) is immediate as S has compact support. Explicitly, using the fact that S
is independent of θ,∫∫

C
∂z̄S(z) dx dy =

∫ 2π

0

∫ ∞
0

1

2
eiθ(

∂

∂r
+

i

r

∂

∂θ
)S(z)r dr dθ

=
1

2

∫ 2π

0

eiθ dθ

∫ ∞
0

∂S

∂r
r dr

= 0.

1Note how there is no issue at either the origin or at δ.
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Lastly (7) follows by similar computation:∫∫
C
|∂z̄S(z)| dx dy =

∫ 2π

0

∫ ∞
0

∣∣∣∣12eiθ(
∂

∂r
+

i

r

∂

∂θ
)S(z)

∣∣∣∣r dr dθ

=
1

2

∫ 2π

0

dθ

∫ ∞
0

∣∣∣∣∂S∂r
∣∣∣∣r dr

= −π
∫ δ

0

s′(r)r dr

=
12

δ4

∫ δ

0

(r2 − r4

δ2
) dr

=
24

15δ

<
2

δ
.

Lemma 3.3.2. Suppose that F ∈ H(B′(0, 1)) is injective and has a simple pole at 0

with residue a. Then diam(Ĉ \ F (B(0, 1))) 6 4|a|.

Proof. Pick any w1, w2 ∈ Ĉ \F (B(0, 1)). We shall show that |w1 − w2| 6 4|a|. Define
g(z) = a/(F (z)− w1). Certainly this is injective, and

g(0) =
a

F (0)− w1

= 0.

By the definition of F , it will have an expansion

F (z) =
a

z
+
∞∑
n=0

cnz
n,

and so

F ′(z) = − a

z2
+
∞∑
n=1

ncnz
n−1.

Hence

g′(z) =
−aF ′(z)

(F (z)− w1)2
=

a

(
az−2 −

∞∑
n=1

ncnz
n−1

)
(
az−1 +

∞∑
n=0

cnzn − w1

)2
=

1− a−2
∞∑
n=1

ncnz
n+1

(
1 + a−1

∞∑
n=0

cnzn+1 − w1z

)2
,

and so g′(0) = 1.
Hence by the Koebe 1

4
Theorem (Theorem 3.1.4), B(0, 1

4
) ⊆ g(B(0, 1)). Hence

Ĉ \ B(0, 4) ⊆ a−1(F (B(0, 1)) − w1). (Seen by applying z 7→ 1/z to these regions.)

Thus Ĉ \ [a−1(F − w1)(B(0, 1))] ⊆ B(0, 4), so Ĉ \ F (B(0, 1)) ⊆ B(w1, 4|a|). In
particular w2 ∈ B(w1, 4|a|), hence |w1 − w2| 6 4|a|.
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Lemma 3.3.3. Let β ∈ C and r > 0. Let D = B(β, r), and let E ⊆ D be compact,

simply connected and of diameter at least r. Let Ω = Ĉ \ E. Then there exists
g ∈ H(Ω) and α ∈ C such that for all z ∈ Ω and all w ∈ D,

|Q(z, w)| < 100

r
, (8)∣∣∣∣Q(z, w)− 1

z − w

∣∣∣∣ < 1 000r2

|z − w|3
, (9)

where Q is given by Q(z, w) = g(z) + (w − α)(g(z))2.

Proof. First assume without loss of generality that β = 0: the result in general follows
simply by composition with translation.

By the Riemann Mapping Theorem (Theorem 3.1.5), there is a conformal map
F : B(0, 1) → Ω. By precomposing with a conformal automorphism of the unit disc,
we may assume that F (0) =∞. Thus it will have a Laurent expansion of the form

F (z) =
a

z
+
∞∑
n=0

cnz
n.

Now define g by

g(z) =
1

a
F−1(z),

so that g is a conformal map from Ω to B(0, |a|−1). Then define α by

α =
1

2πi

∮
Γ(0,r)

zg(z) dz.

Now we show that these satisfy (8) and (9).
Apply Lemma 3.3.2 to F to get that

r 6 diam(E) = diam(Ĉ \ Ω) = diam(Ĉ \ F (B(0, 1))) 6 4|a|.

So as g is a conformal mapping of Ω onto B(0, |a|−1), this implies that for all z ∈ Ω,

|g(z)| 6 |a|−1 <
4

r
(10)

and hence that

|α| 6 1

2π
· 2πr · sup

z∈Γ(0,r)

|zg(z)| < 4r. (11)

So for w ∈ D = B(0, r) and z ∈ Ω, (10) and (11) give that

|Q(z, w)| 6 |g(z)|+ (|w|+ |α|)|g(z)|2 < 4

r
+ (r + 4r)(

4

r
)2 <

100

r
.

Hence we have proved (8).
Now fix w ∈ D and define φ : Ω→ C by

φ(z) = (Q(z, w)− 1

z − w
)(z − w)3

13



If z ∈ Ω ∩D, then in particular |z| < r, so |z − w| 6 |z|+ |w| < 2r, so (8) gives that

|φ(z)| 6 100

r
(2r)3 + (2r)2 < 1 000r2. (12)

We shall use this result below.
Now fix z ∈ Ω. Let β = F−1(z). Observe that

zg(z) =
1

a
zF−1(z) =

1

a
F (β)β = 1 + a−1

∞∑
n=0

cnβ
n+1. (13)

By our choice of F , then β → 0 as z →∞, so (13) implies that zg(z)→ 1 as z →∞.
Hence a Laurent expansion of g around any fixed w ∈ D will be of the form:

g(z) =
1

z − w
+

λ2(w)

(z − w)2
+

λ3(w)

(z − w)3
+ · · · . (14)

This expansion will be valid for large enough z. Let Γ be a circle centred on the origin,
radius sufficiently large. Then by Cauchy’s Residue Theorem,

λ2(w) =
1

2πi

∮
Γ

(z − w)g(z) dz

=
1

2πi

∮
Γ

zg(z) dz − w

2πi

∮
Γ

g(z) dz

= α− w. (15)

Now φ equals:

φ(z) = (Q(z, w)− 1

z − w
)(z − w)3

= (g(z) + (w − α)(g(z))2 − 1

z − w
)(z − w)3.

So consider when z is large. By expanding g in the above expression according to (14),
and then applying (15), we see that φ is bounded as z → ∞. Hence φ has a remov-
able singularity at ∞. Hence the maximum modulus principle and (12) give that
|φ(z)| < 1 000r2 for all z ∈ Ω. Hence∣∣∣∣Q(z, w)− 1

z − w

∣∣∣∣ =
|φ(z)|
|z − w|3

<
1 000r2

|z − w|3
,

which is (9).

Theorem 3.3.4 (Mergelyan’s Theorem). Let K ⊆ C be compact, and such that C \K
is connected. Then f ∈ P (K) if and only if f ∈ A(K).

Proof. The ‘only if’ direction is trivial: if f is a uniform limit of polynomials on K,
then it is a uniform limit of functions which are continuous in K and holomorphic
in K◦, and hence it must be also.

Conversely suppose that f ∈ A(K). By the Tietze Extension Theorem (Theo-
rem 2.3.7), we may continuously extend f to C with compact support: denote this
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extension again by f . Let ω be the modulus of continuity for f . As f has compact
support, it is uniformly continuous, and hence ω(δ) → 0 as δ → 0. We will show for
any δ > 0 that there is a polynomial P such that for all z ∈ K,

|f(z)− P (z)| < 10 000ω(δ).

Throughout the remainder of this proof, fix δ > 0.
With S as in Lemma 3.3.1, and w = ζ + iη, define Φ by

Φ(z) =

∫∫
C
f(z − w)S(w) dζ dη.

As both f and S have compact support, Φ has compact support also.2 Using proper-
ties (4), (5) in Lemma 3.3.1, we have for all z ∈ C that

|Φ(z)− f(z)| =
∣∣∣∣∫∫

C
f(z − w)S(w) dζ dη −

∫∫
C
f(z)S(w) dζ dη

∣∣∣∣
6
∫∫

C
|f(z − w)− f(z)|S(w) dζ dη

6 ω(δ)

∫∫
C
S(w) dζ dη

= ω(δ). (16)

Next, the difference quotients of S converge boundedly to its partial derivatives,
as S has compact support. So by the Dominated Convergence Theorem, letting ∂
represent any of ∂z̄,

∂
∂x
, ∂
∂y

,

∂Φ(z) = ∂

∫∫
C
f(z − w)S(w) dζ dη

= ∂

∫∫
C
f(w)S(z − w) dζ dη

=

∫∫
C
f(w)(∂S)(z − w) dζ dη

=

∫∫
C
f(z − w)∂S(w) dζ dη.

Hence Φ has continuous partial derivatives, and so Φ ∈ C1
c (C). Furthermore,

|∂z̄Φ(z)| =
∣∣∣∣∫∫

C
f(z − w)∂z̄S(w) dζ dη

∣∣∣∣
=

∣∣∣∣∫∫
C
(f(z − w)− f(z))∂z̄S(w) dζ dη

∣∣∣∣
6
∫∫

C
|f(z − w)− f(z)||∂z̄S(w)| dζ dη

<
2ω(δ)

δ
, (17)

2The function Φ may be regarded as a ‘smoothing out’ (a mollification) of f . We shall see
that Φ equals f sufficiently far within K (where f is holomorphic), agreeing with our intuition that
a holomorphic function should already be, in some non-technical sense, ‘smooth’.
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where the second line follows from (6) in Lemma 3.3.1, and the last line follows
from (4) and (7) in Lemma 3.3.1. This statement might be interpreted as meaning
that Φ is ‘almost holomorphic’.

We will now make good on our earlier footnote by showing that Φ(z) = f(z) for
those z ∈ K such that dist(z,C \K) > δ. Letting w = reiθ, using (4) in Lemma 3.3.1,
and using Cauchy’s Formula (valid as dist(z,C \K) > δ implies that f is holomorphic
in a neighbourhood of B(z, δ)),

Φ(z) =

∫∫
C
f(z − w)S(w) dζ dη

=

∫ 2π

0

∫ δ

0

f(z − reiθ)S(reiθ)r dr dθ

=

∫ δ

0

s(r)r

∫ 2π

0

f(z − reiθ) dθ dr

=

∫ δ

0

s(r)r 2πf(z) dr

= f(z)

∫∫
C
S(w) dζ dη

= f(z).

In particular this shows that Φ is holomorphic sufficiently far within K, and hence that
∂z̄Φ = 0 there. Along with Lemma 2.3.1 (as we have already shown that Φ ∈ C1

c (C)),
this implies that

Φ(z) = − 1

π

∫∫
C

(∂z̄Φ)(w)

w − z
dζ dη

= − 1

π

∫∫
X

(∂z̄Φ)(w)

w − z
dζ dη, (18)

where X = {z ∈ supp(Φ) : dist(z,C \K) 6 δ}. The definition of X shows that X
is compact, and may be covered by finitely many open discs D1, . . . , Dn of radius 2δ,
whose centres are not in K. As their centres are not in the closed K, there exist
closed discs dj, concentric with Dj, which are disjoint from K.

Furthermore, as C \K is connected, there exists a polygonal path3 in C \K from
the centre of each Dj to ∞. By taking a restriction of this, we may find a simple
path γj in C \K from some point on ∂dj to some point on ∂Dj. Let Ej = dj ∪ γj.
This set is compact, simply connected, disjoint from K, and of diameter at least 2δ.

So by applying Lemma 3.3.3 with r = 2δ, D = Dj, and E = Ej, there must exist

functions gj ∈ H(Ĉ \ Ej) and constants αj ∈ C, such that for all z ∈ Ĉ \ Ej and all
w ∈ Dj,

3That U ⊆ C is open and connected implies that U is polygonally path connected: fix any x ∈ U .
Openness implies that the set of points which can be polygonally path connected to x is open.
Similarly for its complement. These partition the set. As the first set contains x, it is nonempty,
and hence connectedness implies that it is the whole set.
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|Qj(z, w)| < 50

δ
, (19)∣∣∣∣Qj(z, w)− 1

z − w

∣∣∣∣ < 4 000δ2

|z − w|3
, (20)

where Qj(z, w) = gj(z) + (w − α)(gj(z))2.
Now let X1 = X ∩D1, and for 2 6 j 6 n let Xj = (X ∩Dj) \ (X1 ∪ · · · ∪Xj−1), so

that {X1, . . . , Xn} is a partition of X. Let Ω = C \ (E1 ∪ · · · ∪ En), so Ω is an open
set containing K. Now define F : Ω→ C by

F (z) =
n∑
j=1

1

π

∫∫
Xj

(∂z̄Φ)(w)Qj(z, w) dζ dη.

The definition of Qj means that F is a linear combination of gj and g2
j , and so

F ∈ H(Ω). Furthermore, we have from (18) and (17) that

|F (z)− Φ(z)| =

∣∣∣∣∣
n∑
j=1

1

π

∫∫
Xj

(∂z̄Φ)(w)Qj(z, w) dζ dη +
1

π

∫∫
X

(∂z̄Φ)(w)

w − z
dζ dη

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

1

π

∫∫
Xj

(∂z̄Φ)(w)(Qj(z, w)− 1

z − w
) dζ dη

∣∣∣∣∣
6

n∑
j=1

1

π

∫∫
Xj

|(∂z̄Φ)(w)|
∣∣∣∣Qj(z, w)− 1

z − w

∣∣∣∣ dζ dη

<
2ω(δ)

πδ

n∑
j=1

∫∫
Xj

∣∣∣∣Qj(z, w)− 1

z − w

∣∣∣∣ dζ dη.

Estimate each integral in this sum by letting w = z + reiθ, and bounding the
integrand by (19) for r < 4δ and by (20) for r > 4δ, to get that

n∑
j=1

∫∫
Xj

∣∣∣∣Qj(z, w)− 1

z − w

∣∣∣∣ dζ dη

<

n∑
j=1

[ ∫∫
Xj∩B(z,4δ)

(
50

δ
+

1

r
) dζ dη +

∫∫
Xj\B(z,4δ)

4 000δ2

r3
dζ dη

]

=

∫∫
X∩B(z,4δ)

(
50

δ
+

1

r
) dζ dη +

∫∫
X\B(z,4δ)

4 000δ2

r3
dζ dη

6 2π

∫ 4δ

0

(
50

δ
+

1

r
)r dr + 2π

∫ ∞
4δ

4 000δ2

r3
r dr

< 3 000πδ.

Hence

|F (z)− Φ(z)| < 6 000ω(δ). (21)
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Now Ω is open and contains K. Furthermore, F ∈ H(Ω). So Runge’s Theorem
(Theorem 3.2.2) implies that there exists some polynomial P such that

|F (z)− P (z)| < ω(δ) (22)

for all z ∈ K.

Finally, combining (16), (21) and (22) gives our result:

|f(z)− P (z)| 6 |f(z)− Φ(z)|+ |Φ(z)− F (z)|+ |F (z)− P (z)|
< ω(δ) + ω(δ) + 6 000ω(δ)

< 10 000ω(δ).

Example 3.3.5. Having now seen both Mergelyan’s Theorem and Runge’s Theorem,
one might wonder if there is a shorter way between the two: in particular, is it true that
for any function in A(K) we may find Ω open and containing K such that f ∈ H(Ω)?
The answer is no.

Consider when K = B(0, 1), and f(z) = (z − 1) exp(1/(z − 1)). Clearly this
is holomorphic in B(0, 1), and continuous in B(0, 1) \ {1}. Treating 1/(z − 1) as a
Möbius transformation, it follows that exp(1/(z − 1)) is bounded on B(0, 1); thus f
is continuous at 1 (when approached from within B(0, 1)). But f is not holomorphic
on any neighbourhood of 1. In fact it is not even continuous on any neighbourhood
of 1, as f(z)→ 0 as z → 1 along the real axis to the left of 1, but f(z)→∞ as z → 1
along the real axis to the right of 1.

4 Functional Analytic Proof

The complex analytic proof of Mergelyan’s Theorem, whilst explicit and constructive,
offers little insight into the structure of the broader theory. (Although not entirely;
see the introduction to Section 3.3.) It is via functional analysis that Mergelyan’s
Theorem finds its natural home, as a problem on the function algebra C(K). Our
goal is to characterise its closed subspace P (K), by showing that it equals A(K).

The functional analytic proof that we present here has undergone several rounds
of simplification. Bishop [6, Theorem 4] presents a proof in terms of ‘analytic differ-
entials’, building on his previous paper [4].4 As the theory progressed, Glicksberg and
Wermer [14] substantially simplified the argument through abstract results on Dirich-
let algebras. But this can actually be simplified further, away from the abstraction
of Dirichlet algebras, allowing Carleson [8] to present a proof without introducing the
notion; we shall not either. Even so, the structure of the argument of [14] remains
apparent; it is worth comparing its proof to the one that we give here.5

4See [5] and [3] for some of Bishop’s related work, but much of it has since been superseded.
5In fact, the greater generality of Dirichlet algebras (and other generalisations beyond them)

serves to illuminate much of the further theory, some of which we shall see in Section 5. It is
substantially more complicated however, and remains beyond the scope of this paper.

18



4.1 Functional Analytic Preliminaries

We will use several different measures in our proof, often simultaneously. It is tiresome
to repeat ‘almost everywhere with respect to µ’, varying only which measure we are
talking about. As such we shall abbreviate the statement to simply [µ] or ‘µ-almost
everywhere’. Similarly we shall abbreviate ‘almost all, with respect to µ’ to ‘µ-almost
all’. When we are referring to the Lebesgue measure, we shall use L in place of µ.

Now we state some preliminary definitions and results, without proof.

Definition 4.1.1. Let K ⊆ C be compact. A bounded linear functional φ :C(K)→C
is positive if φ(f) > 0 for all f ∈ C(K) whose range lies in [0,∞).

Definition 4.1.2. Let F (z) =
∫
f(z, w) dµ(w) be some integral. Then we say that F

converges absolutely at z if
∫
f(z, w) |dµ(w)| <∞. Else F is said to diverge at z.

The ‘Riesz Representation Theorem’ is a name which may refer to several different
results, all in a similar vein. Here we present two particular variations, which are
sometimes also known as the Riesz–Kakutani Representation Theorem or the Riesz–
Markov Theorem.6 They characterise the dual of the space of continuous functions
on some compact set7 as being the space of measures. The other common ‘Riesz
Representation Theorem’, regarding the duals of Hilbert spaces, will also be used
later. For proofs, see [21, Theorems 2.14 and 6.19], see also [19, Appendix A].

Theorem 4.1.3 (Riesz Representation Theorem, Real Case). Let K ⊆ C be compact,
and let φ : CR(K) → R be a bounded linear functional. Then there exists a unique
finite real measure µ on K such that for all f ∈ C(K),

φ(f) =

∫
K

f dµ.

Furthermore, ‖φ‖ = |µ|(K).

Theorem 4.1.4 (Riesz Representation Theorem). Let K ⊆ C be compact, and
let φ : C(K)→ C be a bounded linear functional. Then there exists a unique complex
measure µ on K such that for all f ∈ C(K),

φ(f) =

∫
K

f dµ.

Furthermore, ‖φ‖ = |µ|(K). Additionally, if φ is positive, then µ is positive.

(That the measure should be finite is omitted from this case, as we recall that all
complex measures are automatically of bounded variation.)

Remark 4.1.5. It follows that the space of complex measures is a Banach space when
equipped with the norm ‖µ‖ = |µ|(K).

6It is through exploiting these that we may simplify away from Dirichlet algebras; contrast
with [14, Proposition 5].

7More generally, the space of functions on a locally compact Hausdorff space which vanish at
infinity.
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We will refer to a measure as being associated with a particular bounded linear
functional, and vice versa. We shall refer to a measure as annihilating a subset of the
continuous functions if its associated bounded linear functional does so.

Definition 4.1.6. Let K ⊆ C be compact, and let a ∈ K. Then the map f 7→ f(a) is
a positive bounded linear functional on C(K). So by the Riesz Representation Theo-
rem, it has an associated finite positive measure δa on K, called the Dirac measure.8

Lastly we have a standard property of harmonic functions, see [16, Theorem 7.2.5],
see also [21, p. 237].

Theorem 4.1.7 (Mean value property for harmonic functions). Let z ∈ C and r > 0.
Let u ∈ C(B(z, r)) be harmonic. Then, with w = ζ + iη,

u(z) =
1

πr2

∫∫
B(z,r)

u(w) dζ dη.

4.2 Lebesgue Decomposition Theorem

Being able to decompose those measures we are interested in will prove useful in
analysing their behaviour. We initially follow [21, Proposition 6.8]. Our proof of
the Lebesgue Decomposition Theorem itself is adapted from both [17, Section 32,
Theorem C] and [21, Theorem 6.10] in order to give the shortest possible proof of the
result, without needing to mention the Radon–Nikodym Theorem.

Definition 4.2.1. Let (X,M) be a measurable space. Let µ be a positive or complex
measure and α be a positive measure on (X,M). Then µ is absolutely continuous
with respect to α if every α-null set is also µ-null. We denote this by µ� α.

Definition 4.2.2. Let (X,M) be a measurable space. Let µ be a positive or complex
measure on (X,M). Then µ is concentrated on X ∈ M if for all E ∈ M we have
that µ(E) = µ(E ∩X).

Definition 4.2.3. Let (X,M) be a measurable space. Let µ, ν be two positive or
complex measures on (X,M). Then µ and ν are mutually singular if there exist
disjoint Y, Z ∈M such that µ is concentrated on Y and ν is concentrated on Z. We
denote this by µ ⊥ ν.

Definition 4.2.4. Let (X,M) be a measurable space. Let µ be a positive or complex
measure and α be a positive measure on (X,M). Then µ = µa + µs is a Lebesgue
decomposition of µ with respect to α, where µa, µs are complex measures on (X,M)
such that µa � α, and µs ⊥ α.

Lemma 4.2.5. Let (X,M) be a measurable space. Let µ, µ1, µ2 be complex measures
and α, β be positive measures on (X,M).

(i) If µ1 � α and µ2 � α then µ1 + µ2 � α.

(ii) If µ1 ⊥ α and µ2 ⊥ α then µ1 + µ2 ⊥ α.

8It is given by δa(E) = 1E(a).
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(iii) If µ� α and µ ⊥ α then µ = 0.

(iv) If µ� α and α� β then µ� β.

(v) If µ ⊥ α and β � α then µ ⊥ β.

Proof.

(i) This is immediate from the definition of absolute continuity.

(ii) Let Y1, Z1 ∈ M be disjoint sets such that µ1 is concentrated on Y1 and α is
concentrated on Z1. Similarly let Y2, Z2 ∈ M be disjoint sets such that µ2 is
concentrated on Y2 and α is concentrated on Z2. Then µ1 + µ2 is concentrated
on Y1 ∪ Y2 and α is concentrated on Z1 ∩ Z2, which are disjoint.

(iii) By mutual singularity, let Y, Z ∈M be disjoint sets such that µ is concentrated
on Y and α is concentrated on Z. Then X \ Z is α-null, so Y ⊆ X \ Z is α-null,
and so all measurable F ⊆ Y are α-null. By absolute continuity, all measurable
F ⊆ Y are µ-null. But then for any E ∈M, we have that µ(E) = µ(E∩Y ) = 0.

(iv) This is immediate from the definition of absolute continuity.

(v) Let Y, Z ∈ M be disjoint sets such that µ is concentrated on Y and α is
concentrated on Z. Then X \ Z is α-null, and hence X \ Z is β-null. Hence β
is concentrated on Z.

Theorem 4.2.6 (Lebesgue Decomposition Theorem). Let (X,M) be a measurable
space. Let µ be a complex measure and α be a finite positive measure on (X,M). Then
there exists a unique Lebesgue decomposition of µ with respect to α. Furthermore,
the decomposition is concentration preserving, meaning that if µ is concentrated on
S ∈M, then both parts of the decomposition are also concentrated on S.

Proof. First assume that µ is a finite positive measure. Then ν = µ + α is a finite
positive measure, and so L2(X,M, ν) is a Hilbert space. Hence for f ∈ L2(X,M, ν),
the Cauchy–Schwarz inequality gives that∣∣∣∣∫

X

f dµ

∣∣∣∣ 6 ∫
X

|f | dµ 6
∫
X

|f | dν 6

(∫
X

|f |2 dν

) 1
2

(ν(X))
1
2 .

So as ν is finite, f 7→
∫
X
f dµ is a bounded linear functional on L2(X,M, ν). The

Riesz Representation Theorem (the Hilbert spaces version) then implies that there
exists g ∈ L2(X,M, ν) such that∫

X

f dµ =

∫
X

fg dν.

So by taking f to be the indicator function of any E ∈M,

µ(E) =

∫
E

g dν. (23)
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As 0 6 µ(E) 6 ν(E), substitute in (23) to get that 0 6 g 6 1 [ν]. As µ � ν, then
0 6 g 6 1 [µ].

Now let Y = {x ∈ X : g(x) = 1} and Z = {x ∈ X : 0 6 g(x) < 1}. (These
are defined up to a µ-null set; pick any representative of g to define them.) Then
define µa and µs by

µa(E) = µ(E ∩ Z),

µs(E) = µ(E ∩ Y ).

It is immediate from these definitions that the decomposition is concentration pre-
serving.

Now µs is concentrated on Y . Furthermore, by (23) and the definition of Y ,

µ(Y ) =

∫
Y

dν = µ(Y ) + α(Y )

and so α(Y ) = 0, since µ is finite. Hence α is concentrated on X \ Y , and so µs ⊥ α.
It remains to show that µa � α. Let E ∈ M be α-null. We will show that E is

µa-null. By (23),∫
E∩Z

dµ = µ(E ∩ Z) =

∫
E∩Z

g dν =

∫
E∩Z

g dµ+

∫
E∩Z

g dα =

∫
E∩Z

g dµ.

Hence ∫
E∩Z

(1− g) dµ = 0.

Since 1− g > 0 [µ], this implies that µa(E) = µ(E ∩ Z) = 0, that is, E is µa-null.
Now consider when µ is not necessarily a finite positive measure. It decomposes

into µ = µr + iµi, with µr and µi real measures. In turn decompose µr and µi into
their positive and negative variations (that is, their Jordan decompositions). As µ is
a complex measure, and hence is of bounded variation, these positive and negative
variations will be finite positive measures. Hence we may apply the result as it has
just been proved to each of them, and then use parts (i) and (ii) of Lemma 4.2.5 to
assemble their Lebesgue decompositions into a Lebesgue decomposition for µ.

Finally we show that Lebesgue decompositions are unique: suppose that µ = µa+
µs and µ = µ̂a + µ̂s are two Lebesgue decompositions of µ with respect to α. Then
µa − µ̂a = µs − µ̂s. Part (i) of Lemma 4.2.5 gives that the left hand side is absolutely
continuous with respect to α, whilst part (ii) gives that the right hand side is mutually
singular with respect to α. Hence part (iii) gives that both sides are zero, and thus
that the decomposition is unique.

We finish with a result that is unrelated to the Lebesgue Decomposition Theorem,
but whose content is essentially measure-theoretic.

Lemma 4.2.7. Let K ⊆ C be compact, and let µ1 and µ2 be mutually singular complex
measures on K. Then ‖µ1 + µ2‖ = ‖µ1‖+ ‖µ2‖. (Recalling that ‖µ‖ = |µ|(K).)

Proof. Recalling Remark 4.1.5, that ‖·‖ is a norm on the space of complex measures,
then certainly ‖µ1 + µ2‖ 6 ‖µ1‖ + ‖µ2‖. Conversely, let Y, Z ⊆ K be disjoint and
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measurable such that µ1 is concentrated on Y and µ2 is concentrated on Z ⊆ K \ Y .
Let {Ki} and {Li} be any partitions of K. Then {Ki∩Y }∪{Li \ Y } is also a partition
of K, and hence

∞∑
i=1

|µ1(Ki)|+
∞∑
i=1

|µ2(Li)| =
∞∑
i=1

|µ1(Ki ∩ Y )|+
∞∑
i=1

|µ2(Li \ Y )|

=
∞∑
i=1

|(µ1 + µ2)(Ki ∩ Y )|+
∞∑
i=1

|(µ1 + µ2)(Li \ Y )|

6 sup
∞∑
i=1

|(µ1 + µ2)(Mi)|

= ‖µ1 + µ2‖

where the sup is over all partitions {Mi} of K.

Now sup over all partitions {Ki}, {Li} of K to deduce the result.

4.3 Walsh–Lebesgue Theorem

The Walsh–Lebesgue Theorem is a now-classical theorem due to Walsh, see [24] and
[25], and may be regarded as a ‘real version’ of Mergelyan’s Theorem, as it can be
interpreted as dealing with the uniform approximation of harmonic functions, contin-
uous up to the boundary, by the real parts of polynomials.

We shall prove the result via logarithmic potentials. These have a deep theory all
of their own, in particular to potential problems in the plane. They also turn out to
be directly relevant to the problem of polynomial approximation, see [22]. We only
skirt over the theory here – see [23] for a further discussion of logarithmic potentials,
and [2, Chapter X, Section 7] for an advanced take (involving logarithmic capacity)
on how they interact with the present problem. It is from [23, Chapter 0, Theorem
5.6] that we get Lemma 4.3.7, otherwise we largely work from [8, Lemmas 1–3], which
presents a concise proof of the result.

Definition 4.3.1. Let K ⊆ C be compact. Let α be a finite real measure on K.
Define u : C→ R by

u(z) =

∫
K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dα(w).

Then u(z) is said to be the logarithmic potential with respect to the measure α.

Lemma 4.3.2. Let K ⊆ C be compact. Let u be the logarithmic potential with respect
to α, a finite real measure on K. Then u converges absolutely L-almost everywhere
in C. Let Ω be a connected component of C \K. If u(z) = 0 for all z ∈ Ω, then
u(z) = 0 for all z ∈ Ω at which u converges absolutely.

Proof. Let v be the logarithmic potential with respect to |α|. Pick any R > 0. Let
S = R + sup

w∈K
|w|. Let z = x + iy = w + reiθ. Then by applying Fubini’s Theorem
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(justified as our eventual result is finite),∫∫
B(0,R)

v(z) dx dy =

∫∫
B(0,R)

∫
K

log

∣∣∣∣ 1

z − w

∣∣∣∣ |dα(w)| dx dy

6
∫
K

∫∫
B(w,S)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dx dy |dα(w)|

=

∫
K

|dα(w)|
∫ 2π

0

∫ S

0

log

(
1

r

)
r dr dθ

<∞.

Hence v(z) < ∞ for L-almost all z ∈ B(0, R). As R was arbitrary, u converges
absolutely L-almost everywhere in C.

For the next part, suppose that u(z) = 0 for all z ∈ Ω, and that u converges
absolutely at z0 ∈ ∂Ω. We will show that u(z0) = 0. Without loss of generality, we let
z0 = 0. This is just to simplify the notation, as the next part is already very technical.

For δ ∈ (0, 1
2
), let D(δ) = Ω ∩B(0, δ). Define kδ : R>0 → R>0 by

kδ(r) =

∫ 2π

0

1D(δ)(re
iθ) dθ

and thus define Λδ : C(D(δ))→ C by

Λδ(f) =

∫∫
D(δ)

f(z)

kδ(r)
dθ dr,

where z = x+ iy = reiθ as usual. Now for integrable functions f depending only on r,

Λδ(f(r)) =

∫∫
D(δ)

f(r)

kδ(r)
dθ dr

=

∫ δ

0

f(r)

kδ(r)

∫ 2π

0

1D(δ) dθ dr

=

∫ δ

0

f(r) dr. (24)

Hence in particular (now for any integrable f), as the constant function 1 is radial,

|Λ(f)| 6 Λ(1) sup
z∈D(δ)

|f(z)| = δ sup
z∈D(δ)

|f(z)|

So Λ is a positive bounded linear functional on C(D(δ)). Hence by the Riesz Rep-
resentation Theorem (Theorem 4.1.4), Λδ will have some associated finite positive
measure σδ on D(δ). So by (24), for integrable functions f depending only on r,∫

D(δ)

f(r) dσδ = Λδ(f(r)) =

∫ δ

0

f(r) dr.
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By this property of σδ,

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) 6
1

δ

∫
D(δ)

log

∣∣∣∣ 1

|z| − |w|

∣∣∣∣ dσδ(z)

=
1

δ

∫ δ

0

log

∣∣∣∣ 1

r − |w|

∣∣∣∣ dr
= log

∣∣∣∣ 1

w

∣∣∣∣+
1

δ

∫ δ

0

log

∣∣∣∣ 1

1− r/|w|

∣∣∣∣ dr
6 log

∣∣∣∣ 1

w

∣∣∣∣+ C, (25)

where C = sup
T>0

[
1
T

∫ T
0

log |1/(1− t)| dt
]
.

Now fix ρ ∈ (0, 1
2
). Then by continuity of the integrand,

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) −→ log

∣∣∣∣ 1

w

∣∣∣∣ (26)

uniformly over |w| > ρ as δ → 0.
As u(z) = 0 for z ∈ Ω, by Fubini’s Theorem,

0 =
1

δ

∫
D(δ)

u(z) dσδ(z)

=
1

δ

∫
D(δ)

∫
K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dα(w) dσδ(z)

=

∫
K∩B(0,ρ)

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) dα(w)

+

∫
K\B(0,ρ)

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) dα(w).

So rearrange this and apply (25) to obtain∣∣∣∣∫
K\B(0,ρ)

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) dα(w)

∣∣∣∣
=

∣∣∣∣∫
K∩B(0,ρ)

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) dα(w)

∣∣∣∣
6
∫
K∩B(0,ρ)

1

δ

∫
D(δ)

log

∣∣∣∣ 1

z − w

∣∣∣∣ dσδ(z) |dα(w)|

6
∫
K∩B(0,ρ)

(log

∣∣∣∣ 1

w

∣∣∣∣+ C) |dα(w)|,

with the second inequality following because δ < 1
2
, ρ < 1

2
implies that |z| < 1

2
,

|w| < 1
2
, and hence that log |1/(z − w)| > 0.

Now take δ → 0 and apply (26) to obtain that∣∣∣∣∫
K\B(0,ρ)

log

∣∣∣∣ 1

w

∣∣∣∣ dα(w)

∣∣∣∣ 6 ∫
K∩B(0,ρ)

(log

∣∣∣∣ 1

w

∣∣∣∣+ C) |dα(w)|.

So recalling that u converges absolutely at z0 = 0, take ρ→ 0 to obtain the result.
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Remark 4.3.3. When we use this result later, we will use it on both a compact set K,
and on its boundary ∂K, which is also a compact set.

Lemma 4.3.4. Let Φ ∈ C2
c (C). Then the following formula holds, with w = ζ + iη:

Φ(z) = − 1

2π

∫∫
C
(∆Φ)(w) log

∣∣∣∣ 1

z − w

∣∣∣∣ dζ dη.

Proof. Fix z and let w = z + reiθ. Then using the polar description of ∆,

− 1

2π

∫∫
C
(∆Φ)(w) log

∣∣∣∣ 1

z − w

∣∣∣∣ dζ dη

= − 1

2π

∫∫
C
(∆Φ)(w) log

(
1

r

)
r dr dθ

=
1

2π

∫ 2π

0

∫ ∞
0

(
∂

∂r

(
r
∂Φ

∂r

)
+

1

r

∂2Φ

∂θ2

)
(w) log(r) dr dθ

=
1

2π

∫ 2π

0

∫ ∞
0

∂

∂r

(
r
∂Φ

∂r

)
(w) log(r) dr dθ

= Φ(z).

The third equality uses that Φ is 2π periodic in θ to conclude that the integral of ∂2Φ
∂θ2

is zero. The fourth equality hides a routine calculation involving integration by parts.

Lemma 4.3.5. Let K ⊆ C be compact. Let u be the logarithmic potential with respect
to α, a finite real measure on K. If u(z) = 0 for L-almost all z ∈ C, then α ≡ 0.

Proof. Pick any Φ ∈ C2
R(K). Then Φ ∈ C2

c (C), so apply Lemma 4.3.4 and Fubini’s
Theorem to obtain, with w = ζ + iη, that:∫

K

Φ(z) dα(z) = − 1

2π

∫
K

[∫∫
C
(∆Φ)(w) log

∣∣∣∣ 1

z − w

∣∣∣∣ dζ dη

]
dα(z)

= − 1

2π

∫∫
C
(∆Φ)(w)

[∫
K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dα(z)

]
dζ dη

= − 1

2π

∫∫
C
(∆Φ)(w)u(z) dζ dη

= 0.

Now C2
R(K) is dense in CR(K), hence the bounded linear map f 7→

∫
K
f(z) dα(z)

on CR(K) is the zero map. Thus the zero measure may be associated with this map
and so, as the real case of the Riesz Representation Theorem (Theorem 4.1.3) asserts
that associated measures are unique, α ≡ 0.

Remark 4.3.6. A particularly interesting immediate consequence of the preceding
lemma is that a measure is determined by its logarithmic potential.

Lemma 4.3.7. Let K ⊆ C be compact. Let u be the logarithmic potential with respect
to α, a finite real measure on K. Then u is harmonic in C \K, and is such that for
all z0 ∈ C,

u(z0) 6 lim
z→z0

u(z).
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Proof. As the integrand of u(z) is harmonic for z ∈ C \K,

∆u(z) =

∫
K

∆ log

∣∣∣∣ 1

z − w

∣∣∣∣ dα(w) = 0

by the Dominated Convergence Theorem, and hence u is harmonic in C \K.
Now fix z0 ∈ C. By the Monotone Convergence Theorem, for all z ∈ C,

u(z) = lim
M→∞

uM(z)

where

uM(z) =

∫
K

min{M, log

∣∣∣∣ 1

z − w

∣∣∣∣} dα(w).

The integrand of uM is continuous, and so every uM is as well. Furthermore, (uM(z))
is an increasing sequence, for all z ∈ C. Hence uM(z) 6 u(z). Let z → z0 to obtain
that uM(z0) 6 lim

z→z0
u(z), and then let M →∞ to obtain that u(z0) 6 lim

z→z0
u(z).

Remark 4.3.8. By taking a lim inf
z→z0

instead of a lim
z→z0

, we can actually deduce a

stronger result about u, namely that it is lower semicontinuous in C. In fact, it also
has additional properties which make it superharmonic, see [23, Chapter 0, Theorem
5.6].

Theorem 4.3.9 (Walsh–Lebesgue Theorem). Let K ⊆ C be compact, and such
that C \K is connected. Let φ ∈ CR(∂K). Then there exists a sequence of poly-
nomials in z, call them (Pn), such that (Re(Pn)) converges uniformly on ∂K to φ.

Proof. Let ReP (∂K) denote the set of all functions f : ∂K → R which are uniform
limits of the real parts of polynomials in z. Let α be a finite real measure on ∂K
annihilating ReP (∂K). As the imaginary part of any polynomial is the real part of
another polynomial, α in fact annihilates P (∂K).

Let u be the logarithmic potential with respect to α. Let D ⊆ C \K be any
open disc. The integrand of u is harmonic in D, so it is the real part of a function
holomorphic in D; this function will have a Taylor expansion in D. As α is real and
the convergence of the Taylor expansion is uniform, both the Re and the summation
may be commuted with the integral over ∂K (which is with respect to α), to conclude
that u is zero in D. Hence by the identity theorem for harmonic functions, u is zero
in C \K.

So by applying Lemma 4.3.2 to the compact set ∂K (with Ω equal to C \K), we
know that u is zero L-almost everywhere on ∂K.

We now wish to show that u is zero for L-almost all points in K◦. If K◦ is empty
then this is vacuously true. Else, let Φ be the subspace of CR(∂K) consisting of those
functions which have harmonic extensions to K◦. By the maximum principle, any
harmonic extension is unique, and so we we identify φ ∈ Φ with its extension. Let
a ∈ K◦. Then φ 7→ φ(a) is a bounded linear functional on Φ, and is of norm 1. By
the Hahn–Banach Theorem, this extends to a (real valued) bounded linear functional
on CR(∂K), of norm 1. And so by the real case of the Riesz Representation Theorem
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(Theorem 4.1.3), there exists a finite real measure λa on ∂K such that |λa|(∂K) = 1,
and

φ(a) =

∫
∂K

φ dλa (27)

for all φ ∈ Φ. Now note that φ ≡ 1 is in Φ, with an extension that is identically 1
on K◦. Hence λa(∂K) =

∫
∂k

1 dλa = 1. As also |λa|(∂K) = 1, its negative variation
must be zero, and so λa is a positive measure.9

Now let ua be the logarithmic potential with respect to λa. For z ∈ C \K, the in-
tegrand of ua(z) is in Φ, with the obvious extension. Hence (27) applies. Extending λa
by zero to K◦, and letting va be the logarithmic potential with respect to λa− δa, this
gives that va(z) = 0 for z ∈ C \K.10

Furthermore, for z0 ∈ ∂K, by Lemma 4.3.7,

ua(z0) =

∫
∂K

log

∣∣∣∣ 1

z0 − w

∣∣∣∣ dλa(w)

6 lim
z→z0
z∈C\K

∫
∂K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dλa(w)

= lim
z→z0
z∈C\K

log

∣∣∣∣ 1

z − a

∣∣∣∣
= log

∣∣∣∣ 1

z0 − a

∣∣∣∣
<∞.

This implies that va converges absolutely on ∂K, hence applying Lemma 4.3.2 to K
(with Ω equal to C \K), gives that va(z) = 0 for z ∈ ∂K. So for all z ∈ ∂K,

log

∣∣∣∣ 1

z − a

∣∣∣∣ =

∫
∂K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dλa(w). (28)

(This did not follow from (27) because the integrand is not continuous on ∂K, because
z ∈ ∂K.)

Furthermore Lemma 4.3.2 (now on ∂K) assures us that u converges absolutely
L-almost everywhere in the plane. Hence by (28), for L-almost all a ∈ K◦,∫

∂K

∫
∂K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dλa(z) |dα(w)| =
∫
∂K

log

∣∣∣∣ 1

a− w

∣∣∣∣ |dα(w)| <∞.

This justifies the use of Fubini’s Theorem in the next step. It also shows that λa
vanishes on the subset of ∂K where u diverges. Combine this with the fact that u is

9It is called the harmonic measure, and we shall look at it more closely after this result.
10We might be concerned about how λa and δa appear to be ‘doing the same job’, that is repre-

senting evaluation at a. Does this not conflict with the uniqueness part of the Riesz Representation
Theorem? Not so, as whilst δa represents the evaluation map, λa represents the evaluation of the
harmonic extension from the boundary. Hence the linear functional associated with δa − λa need
only be zero on harmonic functions.
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zero where it converges absolutely, and (28), to deduce that for L-almost all a ∈ K◦:

0 =

∫
∂K

u(z) dλa(z)

=

∫
∂K

∫
∂K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dα(w) dλa(z)

=

∫
∂K

∫
∂K

log

∣∣∣∣ 1

z − w

∣∣∣∣ dλa(z) dα(w)

=

∫
∂K

log

∣∣∣∣ 1

a− w

∣∣∣∣ dα(w)

= u(a).

Hence u is zero for L-almost all points in K◦.
As we also know that u is zero in C \K, and is zero for L-almost all points

on ∂K, Lemma 4.3.5 implies that α ≡ 0. Hence by the real case of the Riesz Rep-
resentation Theorem (Theorem 4.1.3), the only bounded linear functional that anni-
hilates ReP (∂K) is the zero functional. Thus ReP (∂K) being closed implies that
ReP (∂K) = CR(∂K).

4.4 Harmonic Measures

Consider any φ ∈ CR(∂K). The Walsh–Lebesgue Theorem gives polynomials whose
real parts converge uniformly to φ on ∂K. By the maximum principle, and the fact
that a uniform limit of harmonic functions is harmonic, they also converge uniformly
to some harmonic function in the interior. This harmonic function is then a suitable
harmonic extension of φ, and so in fact Φ = CR(∂K). Thus the Walsh–Lebesgue
Theorem proves existence of a solution to a general version of the Dirichlet problem,
in which the complement is connected, and the boundary function is continuous.

This means that when we applied the Hahn–Banach Theorem to define λa, we
were not actually extending our evaluation functional at all – and so this measure is
unique. This motivates the following definition, which obviously coincides with our
usage of λa above:

Definition 4.4.1. Let K ⊆ C be compact, and such that C \K is connected.
Let a ∈ K◦. Identifying a function φ ∈ CR(∂K) with its harmonic extension to K◦,
the map φ 7→ φ(a) is a positive bounded linear functional on CR(∂K). So by the
Riesz Representation Theorem (Theorem 4.1.4), it has an associated finite positive
measure λa, called the harmonic measure.

Remark 4.4.2. It is immediate from the definition of the harmonic measure that for
any φ ∈ CR(∂K) that u : K◦ → R defined by

u(z) =

∫
∂K

φ(w) dλz(w)

is harmonic.

Definition 4.4.3. Let K ⊆ C. Then the open components of K are the connected
components of K◦.
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Lemma 4.4.4. Let K ⊆ C be compact, and such that C \K is connected. Let C be
an open component of K. Let a ∈ C. Then λa is concentrated on ∂C.

Proof. For any φ ∈ CR(∂K), then φ1∂C ∈ CR(∂C). Let λ′a be the harmonic measure
for functions in CR(∂C). Extend λ′a by zero to ∂K \ ∂C. By the uniqueness of
harmonic extensions, φ and φ1∂C have the same harmonic extensions to C, and so
(identifying φ with its harmonic extension),∫

∂K

φ dλa = φ(a) = (φ1∂C)(a) =

∫
∂C

φ1∂C dλ′a

=

∫
∂C

φ dλ′a

=

∫
∂K

φ dλ′a.

That this is true for all φ ∈ CR(∂K) implies, by the uniqueness part of the real case
of the Riesz Representation Theorem (Theorem 4.1.3), that λa = λ′a. The result then
follows, as λ′a is concentrated on ∂C.

Lemma 4.4.5 (Parseval relation). Let K ⊆ C be compact, and such that C \K is
connected. Let a ∈ K◦. Let f ∈ A(K) be such that f(a) = 0. Then∫

∂K

(Re f)2 dλa =

∫
∂K

(Im f)2 dλa.

Proof. As Re(f 2) is harmonic,∫
∂K

(Re f)2 dλa =

∫
∂K

Re(f 2) dλa +

∫
∂K

(Im f)2 dλa

= Re(f(a)2) +

∫
∂K

(Im f)2 dλa

=

∫
∂K

(Im f)2 dλa.

Next we prove a coarse version of Harnack’s inequality, which is standard – for
example, see [16, Proposition 7.6.1]. See also [8, Lemma 6].

Lemma 4.4.6. Let z ∈ C and r > 0. Let a ∈ B(z, r). Then there exists a fixed
constant c > 0 such that

u(a) 6 cu(z)

for all u ∈R (B(z, r)) which are non-negative and harmonic.

Proof. Pick s > 0 such that B(a, s) ⊆ B(z, r). By the mean value property for
harmonic functions (Theorem 4.1.7), with w = ζ + iη,

u(a) =
1

πs2

∫∫
B(a,s)

u(w) dζ dη

6
1

πs2

∫∫
B(z,r)

u(w) dζ dη

=
r2

s2
u(z).

30



Theorem 4.4.7 (Harnack’s Inequality). Let Ω ⊆ C be open and connected. Let
a, b ∈ Ω. Then there exists a fixed constant c > 0 such that

u(a) 6 cu(b)

for all u ∈ CR(Ω) which are non-negative and harmonic.

Proof. As Ω is an open connected subset of the plane, it is path-connected. So let γ
be some path between a and b. By compactness of γ we may find points zi ∈ γ and
ri > 0, for i ∈ {1, . . . , n}, such that B(zi, ri) ⊆ Ω, z0 = b, zn = a; and zi+1 ∈ B(zi, ri)
for i < n. As u is harmonic in every B(zi, ri), by Lemma 4.4.6 there exists constants
c1, . . . , cn such that

u(a) = u(zn) 6 cnu(zn−1) 6 . . . 6

(
n∏
i=1

ci

)
u(z0) =

(
n∏
i=1

ci

)
u(b).

The next lemma gets its name because it is a specialisation of the notion of ‘parts’
of the space of multiplicative measures on uniform algebras – see [11, Chapter VI].

Lemma 4.4.8 (Parts lemma). Let K ⊆ C be compact, and such that C \K is con-
nected. Let C be an open component of K, and let a, b ∈ C. Then λa and λb are
mutually absolutely continuous.

Proof. Let φ ∈ CR(∂K) be non-negative. Now as the harmonic measure is positive,
u : C → R defined by

u(z) =

∫
∂K

φ(w) dλz(w)

is non-negative and harmonic in C, see Remark 4.4.2. So apply Harnack’s inequality
to find constants c1, c2 > 0 such that

c1u(a) 6 u(b) 6 c2u(a).

Hence

c1

∫
∂K

φ(w) dλa(w) 6
∫
∂K

φ(w) dλb(w) 6 c2

∫
∂K

φ(w) dλa(w). (29)

To complete the argument, we adapt [21, p. 41]: pick E ⊆ ∂K compact. Fix ε > 0. By
regularity11 of λb, there exists U ⊆ ∂K open in ∂K, containing E, such that λb(U) <
λb(E) + ε. By the definition of the subspace topology12, we may apply Urysohn’s
Lemma (Lemma 2.3.5) to find φ ∈ CR(∂K) such that 1E(w) 6 φ(w) 6 1U(w) for
w ∈ ∂K. Then by (29),

c1λa(E) = c1

∫
∂K

1Eλa 6 c1

∫
∂K

φλa 6
∫
∂K

φλb 6
∫
∂K

1U dλb = λb(U) < λb(E) + ε.

Hence c1λa(E) 6 λb(E). Similarly λb(E) 6 c2λa(E). By regularity of λa and λb, these
extend to all measurable E ⊆ ∂K, and thus the assertion follows.

11Recall that all finite positive measures on Euclidean space are regular.
12That U = V ∩ ∂K, where V ⊆ C is open.
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Lemma 4.4.9. Let K ⊆ C be compact, and such that C \K is connected. Let C be an
open component of K. Let µ be a complex measure on ∂K. Then it has a (Lebesgue)
decomposition µ = hC + σC such that hC � λa and σC ⊥ λa for all a ∈ C.

Proof. Pick any b ∈ C. Then λb is a finite positive measure, so by the Lebesgue
Decomposition Theorem (Theorem 4.2.6), we may decompose µ = hC + σC such that
hC � λb, σC ⊥ λb. Now pick any a ∈ C. Then by the parts lemma, λa and λb are
mutually absolutely continuous, so by parts (iv) and (v) of Lemma 4.2.5, hC � λa,
σC ⊥ λa.

Remark 4.4.10. As a consequence of the previous lemma, we shall refer to µ as
having a Lebesgue decomposition with respect to the open component C. Similarly
we shall write ν ⊥ C or ν � C.

4.5 Cauchy Transforms

We only have three lemmas in this section. The first is trivial, but used often. The
latter two are both of a very similar flavour to previous lemmas relating to logarithmic
potentials. As usual we follow [8], here in particular Lemmas 4 and 5, but much of the
content of these lemmas is standard – see [11, Chapter II, Section 8], or [26, Lemmas
7.4 and 7.5].

Definition 4.5.1. Let K ⊆ C be compact. Let µ be a complex measure on K.
Define F : C→ C by

F (z) =

∫
K

dµ(w)

z − w
.

Then F is said to be the Cauchy transform of µ.

Lemma 4.5.2. Let K ⊆ C be compact. Let µ be a complex measure on K such that∫
K

wn dµ(w) = 0

for all n ∈ N ∪ {0}. Then ∫
K

h(w) dµ(w) = 0

for all h ∈ H(C).

Proof. Pick some large disc containing K. Then h will have a Taylor expansion
h(w) =

∑∞
n=0 cnw

n in this disc. So by uniform convergence,∫
K

h(w) dµ(w) =

∫
K

∞∑
n=0

cnw
n dµ(w)

=
∞∑
n=0

cn

∫
K

wn dµ(w)

= 0.
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Lemma 4.5.3. Let K ⊆ C be compact, and such that C \K is connected. Let F be
the Cauchy transform of µ, a complex measure on ∂K. Then F converges absolutely
L-almost everywhere in C. Furthermore, if F (z) = 0 for all z ∈ C \K, then F (z) = 0
for all z ∈ ∂K at which F converges absolutely. (Compare Lemma 4.3.2.)

Proof. We reason similarly to the start of Lemma 4.3.2. Let G : C → C be defined
by:

G(z) =

∫
∂K

|dµ(w)|
|z − w|

.

Pick any R > 0. Let S = R + sup
w∈∂K

|w|. Let z = x+ iy = w + reiθ. Then by applying

Fubini’s Theorem (justified as our eventual result is finite),∫∫
B(0,R)

G(z) dx dy =

∫∫
B(0,R)

∫
∂K

|dµ(w)|
|z − w|

dx dy

6
∫
∂K

∫∫
B(w,S)

1

|z − w|
dx dy |dµ(w)|

=

∫
∂K

∫ 2π

0

∫ S

0

1 dr dθ |dµ(w)|

<∞.

Hence G(z) < ∞ for L-almost all z ∈ B(0, R). As R was arbitrary, F converges
absolutely L-almost everywhere in C.

For the next part, suppose that F (z) = 0 for all z ∈ C \K, and that F con-
verges absolutely at z0 ∈ ∂K. We will show that F (z0) = 0. As 1/(z − w) may be
geometrically expanded for |z| > sup

w∈∂K
|w|,

0 = F (z) =

∫
∂K

dµ(w)

z − w

=

∫
∂K

∞∑
n=0

wnz−n−1 dµ(w)

=
∞∑
n=0

z−n−1

∫
∂K

wn dµ(w),

commuting sum and integral by uniform convergence of power series. So by uniqueness
of Laurent expansions, every coefficient must be zero, giving

∫
∂K
wn dµ(w) = 0, and

hence that ∫
∂K

h(w) dµ(w) = 0 (30)

for h ∈ H(C), by Lemma 4.5.2.
Now |z0 − w| is a continuous function on ∂K, and so by the Walsh–Lebesgue

Theorem (Theorem 4.3.9), there exists a sequence of polynomials (Pn) such that
|Re(Pn(w))− |z0 − w|| 6 1

2n
for w ∈ ∂K. Now let Qn = n(Pn − Pn(z0)). Then (Qn)

is a sequence of polynomials such that for all n,

Qn(z0) = 0, (31)

Re(Qn(w))− n|z0 − w| > −1. (32)
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Then define a sequence of functions hn : C→ C by

hn(w) =
1− e−Qn(w)

z0 − w
,

noting by (31) that the (hn) have removable singularities at z0, and hence may be de-
fined there. Thus hn ∈ H(C). Furthermore (32) implies that (hn) converges pointwise
to 1/(z0 − w) as n→∞. It also shows that for w ∈ ∂K,

|hn(w)| 6 1 + e−Re(Qn(w))

|z0 − w|
6

1 + e

|z0 − w|
.

Then F converging absolutely at z0 means that this is a suitable control function
with which to apply the Dominated Convergence Theorem to

∫
∂K
hn(w) dµ(w), which

along with (30) gives

0 =

∫
∂K

hn(w) dµ(w) −→
∫
∂K

1

z0 − w
dµ(w) = F (z0).

Lemma 4.5.4. Let K ⊆ C be compact, and such that C \K is connected. Let F be
the Cauchy transform of µ, a complex measure on ∂K. If F (z) = 0 for L-almost all
z ∈ C, then µ ≡ 0. (Compare Lemma 4.3.5.)

Proof. Pick any Φ ∈ C1(∂K). Then Φ ∈ C1
c (C), so applying Lemma 2.3.1 and Fubini’s

Theorem yields, with w = ζ + iη,∫
∂K

Φ(z) dµ(z) = − 1

π

∫
∂K

[∫∫
C

(∂z̄Φ)(w)

w − z
dζ dη

]
dµ(z)

= − 1

π

∫∫
C
(∂z̄Φ)(w)

[∫
∂K

1

w − z
dµ(z)

]
dζ dη

= − 1

π

∫∫
C
(∂z̄Φ)(w)F (w) dζ dη

= 0.

Now C1(∂K) is dense in C(∂K), hence the bounded linear map f 7→
∫
∂K
f(z) dα(z)

on C(K) is the zero map. Thus the zero measure may be associated with this map
and so, as the Riesz Representation Theorem (Theorem 4.1.4) asserts that associated
measures are unique, µ ≡ 0.

Remark 4.5.5. Similar to Remark 4.3.6, the previous lemma shows that a measure
is determined by its Cauchy transform. Additionally, the previous two lemmas are
actually sufficient to prove Mergelyan’s Theorem in the case of no interior points,
when ∂K = K: suppose that µ is a complex measure annihilating P (K). Then
by the pole-pushing lemma (Lemma 2.3.3), its Cauchy transform is zero in C \K.
Hence Lemma 4.5.3 shows that F is zero L-almost everywhere in the plane, and so
Lemma 4.5.4 shows that µ ≡ 0.

34



4.6 Mergelyan’s Theorem

We are now ready to tackle Mergelyan’s Theorem itself! Strong links are visible
between the approach in this section and the abstract approach taken in [14], which
assumes results analogous to the results of our previous sections. As usual we adapt
[8], here in particular Lemmas 7 and 8. We begin by presenting an abstract form of
the F. and M. Riesz Theorem, also see [13] or [11, Chapter II, Theorem 7.6].

Lemma 4.6.1. Let K ⊆ C be compact, and such that C \K is connected. Let a ∈ K◦.
Let gn ∈ A(K) for n ∈ N. Suppose that

∞∑
n=1

∫
∂K

|gn|2 dλa <∞.

Then gn → 0 [λa].

Proof. Treating the sum as an integral with respect to the counting measure, Fubini’s
Theorem allows us to interchange summation and integration. Hence for λa-almost
all z ∈ ∂K,

∞∑
n=1

|gn(z)|2 <∞.

Hence gn → 0 [λa].

Theorem 4.6.2 (F. and M. Riesz Theorem). Let K ⊆ C be compact, and such
that C \K is connected. Let C be an open component of K. Let µ be a complex mea-
sure on ∂K annihilating P (∂K). Let µ = hC +σC be the Lebesgue decomposition of µ
with respect to C. Then hC annihilates P (∂C). (And hence also annihilates P (∂K),
as we may view it as a subset of P (∂C).) Furthermore for a ∈ C,∫

∂K

dhC(z)

a− z
=

∫
∂K

dµ(z)

a− z
.

Proof. Fix a ∈ C. We begin by defining a sequence of polynomials (Pn), and showing
that they have particular properties.

Now σC and λa are mutually singular, so let them be concentrated on disjoint Y, Z ⊆
∂K respectively. Furthermore σC is a complex measure and so |σC | is finite, hence
there exist Yn ⊆ Y closed, increasing, and such that σC(Y \ Yn) → 0 as n → ∞.
Similarly there exist Zn ⊆ Z closed and such that λa(Z \ Zn) → 0 as n → ∞. By
relabelling if necessary, we may assume that in fact λa(Z \ Zn) 6 2−4n−1/9.

Let fn : Yn ∪ Zn → R be defined by

fn(z) =

{
1 + 2n if z ∈ Yn,
2−n if z ∈ Zn.

Now Y, Z disjoint implies that Yn, Zn are disjoint. As they are closed, fn is continuous.
So apply the real case of the Tietze Extension Theorem (Theorem 2.3.6) to extend fn
to an element of Cc(C); then restrict to ∂K to produce an element of CR(∂K), which
we shall denote again by fn.
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The Walsh–Lebesgue Theorem (Theorem 4.3.9) now allows fn to be uniformly
approximated on ∂K by the real parts of polynomials. Pick polynomials Pn such that

|fn(z)− Re(Pn(z))| < 2−n−1 (33)

for all z ∈ ∂K. Then by (33),∫
Zn

(RePn(z))2 dλa(z) 6 λa(Zn) · sup
z∈Zn

(RePn(z))2

6 λa(∂K) · sup
z∈Zn

(fn(z)− 2−n−1)2

= (2−n − 2−n−1)2

6 2−2n−1.

As the Tietze extension fn has the same supremum as the original fn, then (33) also
gives that ∫

Z\Zn

(RePn(z))2 dλa(z) 6 λa(Z \ Zn) · sup
z∈Z\Zn

(RePn(z))2

6 λa(Z \ Zn) · sup
z∈∂K

(fn(z)− 2−n−1)2

= λa(Z \ Zn) · (1 + 2n − 2−n−1)2

6 9 · λa(Z \ Zn) · 22n

6 2−2n−1.

So combine these last two to deduce that∫
∂K

(RePn(z))2 dλa(z) =

∫
Z

(RePn(z))2 dλa(z) 6 2−2n. (34)

This then implies by the Cauchy–Schwarz inequality that

|Re(Pn(a))| =
∣∣∣∣∫
∂K

Re(Pn) dλa

∣∣∣∣ 6 2−n. (35)

Additionally, for z ∈ Yn,

Re(Pn(z)) > fn(z)− 2−n−1 = 1 + 2n − 2−n−1 > 2n. (36)

Now let Qn = Pn−Pn(a). Then by our Parseval relation (Lemma 4.4.5), and (34),
and (35),

∞∑
n=1

∫
∂K

|Qn|2 dλa = 2
∞∑
n=1

∫
∂K

(ReQn)2 dλa <∞.

So by Lemma 4.6.1, Qn → 0 [λa]. As hC � λa, then Qn → 0 [hC ]. Further-
more (Yn) increasing and (36) imply that e−Qn → 0 [σC ].

Now (33), (35), and the fact that the Tietze extension fn has the same infimum
as the original fn imply that ReQn is bounded above on ∂K independently of n,
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and hence
∣∣e−Qn

∣∣ = e−ReQn is bounded above on ∂K independently of n. So by the
Dominated Convergence Theorem, for any m ∈ N ∪ {0},

0 =

∫
∂K

zme−Qn(z) dµ(z) −→
∫
∂K

zm dhC =

∫
∂C

zm dhC

as n→∞. The first equality follows by Lemma 4.5.2, as the integrand is entire. The
last equality follows because hC � C, so Lemma 4.4.4 implies that hC is concentrated
on C.

Hence hC annihilates P (∂C).

For the last assertion, observe that∫
∂K

dµ(z)

a− z
=

∫
∂K

1− e−Qn(z)

a− z
dµ(z) +

∫
∂K

e−Qn(z)

a− z
dµ(z).

As Qn(a) = 0, the integrand of the first integral has a removable singularity at a. So
it is entire, and so by Lemma 4.5.2 this integral must be zero. Then taking n → ∞
gives that ∫

∂K

dµ(z)

a− z
=

∫
∂K

dhC(z)

a− z

by the Dominated Convergence Theorem.

Lemma 4.6.3. Let K ⊆ C be compact, and such that C \K is connected. Let C be
an open component of K. Let µ be a complex measure on ∂K annihilating P (∂K).
Let µ = hC + σC be a Lebesgue decomposition of µ with respect to C. Let f ∈ A(K).
Then

∫
∂K
f dhC = 0.

Proof. Let M = 2 sup
z∈K
|f(z)|. Let g(z) = log(f(z) +M), taking the principal branch

of log. By the Walsh–Lebesgue Theorem (Theorem 4.3.9), choose polynomials (Pn)
such that for all z ∈ ∂K,

|Re(g(z)− Pn(z))| 6 2−n−1.

As g is holomorphic, Re(g(z)− Pn(z)) is harmonic, hence

|Re(g(z)− Pn(z))| 6 2−n−1 (37)

for all z ∈ K, by the maximum principle.

Fix a ∈ C. Let Qn = Pn + g(a)− Pn(a). Then by (37), for all z ∈ ∂K,

|Re(g(z)−Qn(z))| 6 2−n, (38)

which together with our Parseval relation (Lemma 4.4.5), applied to g −Qn, gives

∞∑
n=1

∫
∂K

|g −Qn|2 dλa = 2
∞∑
n=1

∫
∂K

(Re(g −Qn))2 dλa <∞.
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So by Lemma 4.6.1, g−Qn → 0 [hC ]. Now (38) implies that
∣∣eQn

∣∣ = eReQn is bounded
above and below on ∂K independently of n. So by the Dominated Convergence
Theorem, ∫

∂K

f dhC =

∫
∂K

(f +M) dhC

=

∫
∂K

eg(z) dhC(z)

= lim
n→∞

∫
∂K

eQn(z) dhC(z)

= 0.

The last equality follows by Lemma 4.5.2 as the integrand is entire, along with the
fact that hC annihilates P (∂K), by the F. and M. Riesz Theorem.

Theorem 4.6.4 (Mergelyan’s Theorem). Let K ⊆ C be compact, and such that C \K
is connected. Then f ∈ P (K) if and only if f ∈ A(K).

Proof. The ‘only if’ direction is trivial and is the same as the complex analytic proof,
which is Theorem 3.3.4. Conversely suppose that f ∈ A(K). Then identifying f with
its restriction, f ∈ C(∂K). Let µ be any complex measure annihilating P (∂K).

Let C1, . . . Cm, . . . be the open components of K. (There are at most countably
many, as an open set is the union of at most countably many open balls.) We shall
assume without loss of generality that there are an infinite number of them, as the
finite case is strictly simpler, with the argument following the same lines. Let µ =
hC1 + σC1 be the Lebesgue decomposition of µ with respect to C1. Now repeat; let
σC1 = hC2 +σC2 be the Lebesgue decomposition of σC1 with respect to C2. Proceeding
in this fashion we obtain two sequences of measures, (hCm) and (σCm).

Fix i, j ∈ N, such that i < j. As σCi
⊥ Ci, and Lebesgue decompositions are

concentration preserving (see Theorem 4.2.6), hCj
⊥ Ci and σCj

⊥ Ci also. Hence
as hCi

� Ci, Lemma 4.2.5 part (v) implies that hCj
⊥ hCi

and σCj
⊥ hCi

. And
so Lemma 4.2.5 part (ii) shows that any finite sum (over j) of hCj

and σCj
will be

mutually singular with hCi
. So by Lemma 4.2.7, for all k ∈ N,

‖µ‖ = ‖σCk
‖+

k∑
m=1

‖hCm‖.

Thus in particular
∑k

m=1 ‖hCm‖ 6 ‖µ‖, and so
∑∞

m=1 hCm converges absolutely. We
recall that the space of complex measures equipped with the ‖·‖ norm is complete, by
Remark 4.1.5, and so in fact this sum converges in this norm. So let σ = µ−

∑∞
m=1 hCm .

Next we examine σ.
First fix z ∈ C \K. Then by the pole-pushing lemma (Lemma 2.3.3), 1/(z−w) ∈

P (K) as a function of w. Hence also 1/(z − w) ∈ P (∂K). As µ annihilates P (∂K),
then by the F. and M. Riesz Theorem (Theorem 4.6.2), so does hCm , for all m. Hence σ
does also.13 So in particular, ∫

∂K

dσ(w)

z − w
= 0.

13By continuity of evaluation on the dual space.
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Next, fix any j ∈ N, and fix z ∈ Cj. Now with Cj in place of K, then 1/(z−w) ∈
P (∂Ci) for all i 6= j. Hence ∫

∂K

dσ(w)

z − w
= 0

as the integrals against hCi
, for i 6= j, are zero by the first part of the F. and M. Riesz

Theorem (Theorem 4.6.2), and the integrals against µ and hCj
cancel, by the second

part of the F. and M. Riesz Theorem.
To summarise: we have shown for all z ∈ (C \K) ∪

⋃∞
m=1 Cm = (C \K) ∪ K◦

that
∫
∂K

dσ(w)/(z − w) = 0. Furthermore, our second Cauchy transform lemma
(Lemma 4.5.3) implies that the integral is zero for L-almost all z ∈ ∂K. Hence∫
∂K

dσ(w)/(z − w) = 0 for L-almost all z ∈ C, and so the third Cauchy transform
lemma (Lemma 4.5.4) implies that σ ≡ 0.14

Hence µ =
∑∞

m=1 hCm , so Lemma 4.6.3 implies that∫
∂K

f dµ =
∞∑
m=1

∫
∂K

f dhCm = 0,

commuting sum and integral by continuity of evaluation on the dual space. That
this is true for all measures annihilating P (∂K) shows by the Riesz Representation
Theorem (Theorem 4.1.4) that all bounded linear functions which vanish on P (∂K)
also vanish at f . So P (∂K) closed implies that f ∈ P (∂K). Hence by the maximum
principle and the uniqueness of harmonic extensions, f ∈ P (K).

5 Rational Approximation

We have mentioned previously that functional analytically, Mergelyan’s Theorem is
but the tip of a very large iceberg – something which is not necessarily clear when forg-
ing a direct path towards our goal. So here we exhibit some of the fauna and flora of
function algebras, which Mergelyan’s Theorem lives alongside. We previously touched
on the fact that many of the elements of our functional analytic proof of Mergelyan’s
Theorem are simply special cases of far more general results (over Dirichlet algebras,
logmodular algebras, . . . ), and this more general context remains its natural home.
A systematic treatment in this broader framework can be found in [11], with further
reading in [9], [2] or [28]. An introduction to the topic can be found in [7].

Here we state some of those results which relate closely to Mergelyan’s Theorem,
and omit nearly all the proofs. In particular, we present some theorems concerning
rational approximation, which is the natural generalisation from Mergelyan’s Theo-
rem. However, the general question of rational approximation remains open; there
is no complete analogue of Mergelyan’s Theorem. Many further results of this type
exist, see our previous references. (In particular we do not cover the notion of peak
points here.)

Definition 5.1. A rational function is one which is the quotient of two polynomials.

14This is a special case of Wilken’s Theorem, see [11, Chapter II, Theorem 8.5], or [12, Lemma
3.5], who cites [27].
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Definition 5.2. The complementary components of K ⊆ C are the connected com-
ponents of its complement.

Definition 5.3. Let K ⊆ C be compact. Then let R(K) denote the set of all functions
f : K → C which are uniform limits on K of rational functions in z whose poles lie
outside K.

It is clear that in general,

P (K) ⊆ R(K) ⊆ A(K) ⊆ C(K).

The fundamental question we have been investigating is when any of these inclusions
become equalities. The last one is easy: A(K) = C(K) if and only if K has no in-
terior. Mergelyan’s Theorem gives P (K) = R(K) = A(K) in the case of K having
connected complement. And certainly P (K) ( R(K) when the complement of K
is disconnected: let α be in one of the bounded complementary components of K.
Then 1/(z − α), as a function of z, is in R(K), but cannot be in P (K), as it is not
holomorphic at α (if it was in P (K) the maximum principle would imply holomor-
phicity in all bounded complementary components). Conversely P (K) = R(K) when
the complement of K is connected: this follows from the pole-pushing lemma, see
Remark 2.3.4. Hence the only remaining question is to characterise R(K), and in
particular when R(K) = A(K), in the case of K having disconnected complement.15

We begin with a generalisation of Mergelyan’s Theorem, see [12] or [2, Chapter X,
Theorem 8.4]:

Theorem 5.4 (Mergelyan’s Theorem). Let K ⊆ C be compact, with at most finitely
many complementary components. Then f ∈ R(K) if and only if f ∈ A(K).

This gives a complete answer in the case of finitely many complementary compo-
nents. What about infinitely many complementary components? Sadly, Mergelyan’s
Theorem does not generalise, as the ‘Swiss cheese’ example demonstrates; we follow
[28, Example 9.6], see also [20, No. 2.4] or [11, Chapter II, Section 1].

Example 5.5 (Mergelyan’s Swiss Cheese). Let B = B(0, 1), and enumerate the
rational points of B as {qn}. We shall pick numbers rn > 0: for these, define Bn =
B(qn, rn). Begin by picking r1 ∈ (0, 1

2
) such that B1 ⊆ B.

Now for each n in turn, check if qn ∈
⋃n−1
i=1 Bi. If it is, skip it. If it is not, pick

rn ∈ (0, 2−n) such that Bn is disjoint from
⋃n−1
i=1 Bi. Proceeding in this fashion, we

produce a sequence of open discs {Bn}, which we have relabelled to remove all those qn
we skipped. See Figure 2. Then:

(i) For all n, Bn ⊆ B.

(ii) For n 6= m, Bn ∩Bm = ∅.

(iii)
∑∞

n=1 rn <∞.

(iv) K = B \
⋃∞
n=1Bn has empty interior.

15Observe how we have now transitioned to considering the properties of K ⊆ C, rather than
f ∈ P (K).
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Figure 2: Mergelyan’s Swiss Cheese

Now let µ be a measure equal to dz on ∂B, and equal to − dz on
⋃∞
n=1 ∂Bn. By

(i) this is well defined; by (iii), µ is a finite measure. It is certainly a nonzero measure.
Let Λ be the bounded linear functional on C(K) associated with µ.

Then Λ is nonzero and annihilates R(K); this is because the residue from a pole
in Bn appears once in the integral around ∂B, and once negatively in the integral
around ∂Bn, and thus cancels out. Hence R(K) 6= C(K) (= A(K) as K has no
interior).

In fact, it is possible to find even worse cases where rational approximation fails.
[11, Chapter VIII, Section 9] provides examples of:

(i) A compact set K ⊆ C whose interior is connected and dense in K, and whose
boundary has zero Lebesgue measure, but for which R(K) 6= A(K). (Compare
with the Hartogs–Rosenthal Theorem (Theorem 5.7).)

(ii) A compact set K ⊆ C whose interior is simply connected and dense in K, but
for which R(K) 6= A(K).

(iii) A compact setK ⊆ C whose interior consists of two connected components C1, C2,
both simply connected, such that K = C1 ∪ C2, and such that R(Cj) = A(Cj)
for j ∈ {1, 2}, but for which nonetheless R(K) 6= A(K).

Despite this, Mergelyan’s Theorem can be extended to infinitely many comple-
mentary components – provided that the diameters of those components are bounded
away from zero [11, Chapter II, Theorem 10.4]. Furthermore, Runge’s Theorem does
directly generalise to infinitely many complementary components: indeed, it is usually
stated in this form [21, Theorem 13.6].
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Theorem 5.6 (Runge’s Theorem). Let K ⊆ C be compact. Suppose that Ω is an
open set containing K. Suppose also that f ∈ H(Ω). Fix ε > 0. Let P be a set
consisting of precisely one point in each complementary component of K. Then there
exists a rational function r(z) with poles only in P such that

sup{|f(z)− r(z)| : z ∈ K} < ε.

Hence in particular, f ∈ R(K).

We can recover our earlier version of Runge’s Theorem by assuming that Ĉ \K is
connected, and letting P = {∞}.

Compare the proof of the next theorem with the discussion in Remark 4.5.5. By
arguing similarly, and invoking the second Cauchy transform lemma (Lemma 4.5.3),
it is possible to slightly generalise this theorem to those compact K ⊆ C which lie on
the boundary of their unbounded complementary component, a notion which will be
familiar to readers of [14]. We follow [26, Theorem 7.8], alternatively [11, Chapter II,
Corollary 8.4].

Theorem 5.7 (Hartogs–Rosenthal Theorem). Let K ⊆ C be compact and with
Lebesgue measure zero. Then R(K) = C(K).

Proof. Suppose for contradiction that R(K) 6= C(K). Then by the Riesz Repre-
sentation Theorem (Theorem 4.1.4), there exists some nonzero measure µ annihilat-
ing R(K). Hence in particular, for all z ∈ C \K,∫

K

dµ(w)

z − w
= 0.

As K has Lebesgue measure zero, the integral is zero L-almost everywhere. Hence by
Lemma 4.3.5, µ ≡ 0. This is a contradiction, hence R(K) = C(K).

Remark 5.8. The previous theorem, combined with the ‘Swiss cheese’ example, pro-
vides a roundabout way of showing a topological oddity: a compact set whose bound-
ary has positive Lebesgue measure. The ‘ε-Cantor Set’ [1, pp. 140–141] is another
such example: it is nowhere dense, yet has positive Lebesgue measure.

To progress further with the problem of rational approximation, we need some
additional definitions.

Definition 5.9. Let K ⊆ C be compact. A subset X ⊆ C(K) is an algebra if for all
f, g ∈ X and λ ∈ C that f + g, fg, λf ∈ X also.

Definition 5.10. Let K ⊆ C be compact. A subset X ⊆ C(K) is a Dirichlet algebra
if it is an algebra such that

(i) X is closed in C(K);

(ii) For all x, y ∈ K such that x 6= y, there exists f ∈ X such that f(x) 6= f(y)
(X is said to separate points);

(iii) X contains every constant function;
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(iv) every f ∈ CR(K) is the uniform limit of the real parts of functions in X.

For instance, the Walsh–Lebesgue Theorem (Theorem 4.3.9) implies that P (∂K)
is a Dirichlet algebra, provided K ⊆ C compact with connected complement.

Now, see [11, Chapter II, Corollary 9.3],

Theorem 5.11. Let K ⊆ C be compact. If R(K) is a Dirichlet algebra, then R(K) =
A(K).

Extending these notions provides a route to proving Mergelyan’s Theorem: this
is what is done in [14, Theorem 2], which was historically one of the stepping stones
towards developing the functional analytic proof we provide here.

Having seen these previous results – and the lack of a complete answer for rational
approximation – we finish with a theorem that might come as a surprise, by seemingly
providing a complete characterisation of rational approximation. In practice, though,
it simply translates one difficult problem into another. Its presentation here is brief,
and only to give a glimpse of the depth of the further theory. First some definitions.
We use [11, Chapter VIII, Theorem 8.2], see also [11, Chapter VIII, Theorem 5.1] and
[28, Theorem 12.1].

Definition 5.12. Let K ⊆ C. Let A C (K) denote the set of functions f ∈ C(Ĉ)
which are analytic off some compact subset ofK, such thatf(∞)=0 and sup

z∈Ĉ\K
|f(z)|61.

A function which is analytic at ∞ has a Laurent expansion about ∞ of the form
f(z) = a0 + a1z

−1 + a2z
−2 + · · · . Then we define f ′(∞) = a1 = lim

z→∞
z(f(z)− f(∞)),

which need not equal lim
z→∞

f ′(z).

Definition 5.13. The continuous analytic capacity of K ⊆ C is defined to be

α(K) = sup{|f ′(∞)| : f ∈ A C (K)}.

Theorem 5.14 (Vitushkin’s Theorem). Let K ⊆ C be compact. Then the following
are equivalent:

(i) R(K) = A(K).

(ii) For all U ⊆ C open and bounded, α(U \K) = α(U \K◦).

(iii) For all z ∈ C, all δ > 0, and all r > 1,

α(B(z, δ) \K◦) 6 α(B(z, rδ) \K).

(iv) There exists r > 1 and c > 0 such that for all z ∈ C and all δ > 0,

α(B(z, δ) \K◦) 6 cα(B(z, rδ) \K).

(v) For all z ∈ ∂K, there exists r > 1 such that

lim sup
δ→0

α(B(z, δ) \K◦)
α(B(z, rδ) \K)

<∞.
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