

Mathematical Institute

Neural Controlled Differential Equations for Irregular Time Series

PATRICK KIDGER, JAMES MORRILL, JAMES FOSTER, TERRY LYONS

Mathematical Institute University of Oxford

Neural Information Processing Systems 2020

Oxford Mathematics

• Neural ODEs are famously the continuous-time limit of ResNets:

$$z_{n+1} = z_n + f_{\theta}(z_n) \quad \longrightarrow \quad \frac{\mathrm{d}z}{\mathrm{d}t} = f_{\theta}(z(t))$$

- We introduce Neural Controlled Differential Equations as the continuous-time limit of RNNS.
- Operate on messy time series; memory efficient; state-of-the-art performance; easy to implement.

Neural ODEs

(Chen at al. 2018)

Use an ODE

$$z(t)=z(0)+\int_0^t f_ heta(z(s))\,\mathrm{d}s \quad ext{ for } t\in[0,\,T]$$

as a learnt component of a differentiable computation graph.

- The integral over *s* ∈ [0, *T*] is introduced and then integrated over, and is just an internal detail of the model.
- But given some ordered data (x₀,...,x_n), we would like to align s ∈ [0, T] with the ordering of the data.
- Problem: The solution to an ODE is determined by its initial condition.

Controlled Differential Equations

(Lyons 1998, Lyons et al. 2004)

Have the local dynamics depend upon some time-varying $X : [0, T] \to \mathbb{R}^{\nu}$. This gives

$$z(t) = z(0) + \int_0^t f(z(s)) \, \mathrm{d}X(s) \underbrace{\int_0^t f(z(s)) \, \mathrm{d}X(s)}_{=\int_0^t f(z(s)) \frac{\mathrm{d}X}{\mathrm{d}s}(s) \, \mathrm{d}s}$$

which is a Riemann–Stieltjes integral, and "f(z(s)) dX(s)" is a matrix-vector product.

Observe
$$\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))$$
 with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^{\vee}$.
Let $X : [t_0, t_n] \to \mathbb{R}^{\nu+1}$ interpolate this data, so $X(t_i) = (x_i, t_i)$.

Learn functions $\zeta_{ heta}$, $f_{ heta}$ and a linear map $\ell_{ heta}$ such that

$$z(0) = \zeta_{\theta}(t_0, x_0), \quad z(t) = z(0) + \int_0^t f_{\theta}(z(s)) \,\mathrm{d}X(s),$$

and the output is either $\ell_{\theta}(z(T))$ or $\ell_{\theta}(z(t))$.

 ζ_{θ} and f_{θ} are arbitrary neural networks (feedforward, ...), and z is hidden state. Directly x_1 , x_2 , x_3 , x_n analogous to an RNN " $z_{n+1} = f_{\theta}(z_n, x_n)$ ". $t_1 t_2$, t_3 , t_n

Oxford Mathematics z X

Advantages

- Using a continuous-time theory pushes the problem of messy data into the interpolation, which is better suited for handling it.
- The equation $z(t) = z(0) + \int_0^t f_{\theta}(z(s)) \frac{dX}{ds} ds$ may be interpreted as a (neural) ODE, so:
 - We can solve it using existing software.
 - The adjoint method may be applied, even over observations.
- Neural CDEs demonstrate state-of-the-art performance.
- Drawing on the existing theory of CDEs gives strong theoretical guarantees. For example, neural CDEs are universal approximators.

Model	Test Accuracy (mean \pm std, computed across five runs)			Memory
	30% dropped	50% dropped	70% dropped	
GRU-ODE	$92.6\% \pm 1.6\%$	$86.7\% \pm 3.9\%$	$89.9\% \pm 3.7\%$	1.5
GRU-∆t	$93.6\%\pm2.0\%$	$91.3\%\pm2.1\%$	$90.4\% \pm 0.8\%$	15.8
GRU-D	$94.2\% \pm 2.1\%$	$90.2\% \pm 4.8\%$	$91.9\%\pm1.7\%$	17.0
ODE-RNN	$95.4\% \pm 0.6\%$	$96.0\% \pm 0.3\%$	$95.3\% \pm 0.6\%$	14.8
Neural CDE (ours)	98.7% ± 0.8%	98.8% ± 0.2%	98.6% ± 0.4%	1.3

Gotchas

$$z(0) = \zeta_{\theta}(t_0, x_0), \quad z(t) = z(0) + \int_0^t f_{\theta}(z(s)) \,\mathrm{d}X(s), \quad y pprox \ell_{\theta}(z(T))$$

• ζ_{θ} is a function of the initial point for translation sensitivity.

• Can be a function of any static features as well.

- Include time as a channel in X. (Recall $X(t_i) = (x_i, t_i)$.)
- f_{θ} should have a final tanh nonlinearity.

Comparison to control theory problems (speaking very broadly):

- Control theory: System *f* is fixed; try to find optimal *X* producing a desired response *z*.
- (Neural) CDEs: Input X is fixed; try to find optimal f_θ producing a desired response z.

Exciting future applications: can train Neural SDEs as a GAN, using a Neural CDE as the discriminator! (Kidger et al. 2020)

- New tool for time series, uniting the well-understood mathematics of CDEs with the well-understood machine learning of Neural ODEs.
- Acts on messy (irregularly sampled, partially observed, variable length) time series.
- Memory efficient to train.
- Strong theoretical connections.
- Demonstrates state-of-the-art performance.
- Straightforward to implement with existing tools.

Links

https://arxiv.org/abs/2005.08926 https://github.com/patrick-kidger/NeuralCDE https://youtu.be/sbcIKugElZ4

Library: https://github.com/patrick-kidger/torchcde

These slides: https://kidger.site/links/NeurIPS-2020-Neural-CDEs

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, "Neural Ordinary Differential Equations", in *Advances in Neural Information Processing Systems 31*, pp. 6571–6583, Curran Associates, Inc., 2018

T. Lyons, *Differential equations driven by rough signals*, Revista Matemática Iberoamericana, 14(2) pp. 215–310, 1998

T. Lyons, M. Caruana, and T. Levy, *Differential equations driven by rough paths*. Springer, 2004. École d'Été de Probabilités de Saint-Flour XXXIV - 2004

P. Kidger, J. Foster, X. Li, H. Oberhauser, T. Lyons, "Neural SDEs Made Easy: SDEs are Infinite-Dimensional GANs", *OpenReview*, 2020.