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Summary

• Neural ODEs are famously the continuous-time limit of
ResNets:

zn+1 = zn + fθ(zn) −→ dz

dt
= fθ(z(t))

• We introduce Neural Controlled Differential Equations as the
continuous-time limit of RNNS.

• Operate on messy time series; memory efficient;
state-of-the-art performance; easy to implement.
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Neural ODEs
(Chen at al. 2018)

Use an ODE

z(t) = z(0) +

∫ t

0
fθ(z(s))ds for t ∈ [0,T ]

as a learnt component of a differentiable computation graph.

• The integral over s ∈ [0,T ] is introduced and then integrated
over, and is just an internal detail of the model.

• But given some ordered data (x0, . . . , xn), we would like to
align s ∈ [0,T ] with the ordering of the data.

• Problem: The solution to an ODE is determined by its initial
condition.
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Controlled Differential Equations
(Lyons 1998, Lyons et al. 2004)

Have the local dynamics depend upon some time-varying
X : [0,T ]→ Rv . This gives

z(t) = z(0) +

∫ t

0
f (z(s))dX (s)

∫ t

0
f (z(s))dX (s)︸ ︷︷ ︸

=
∫ t

0 f (z(s)) dX
ds

(s) ds

which is a Riemann–Stieltjes integral, and “f (z(s))dX (s)” is a
matrix-vector product.
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Bringing them together: Neural CDEs

Observe x = ((t0, x0), . . . , (tn, xn)) with ti ∈ R and xi ∈ Rv .
Let X : [t0, tn]→ Rv+1 interpolate this data, so X (ti ) = (xi , ti ).

Learn functions ζθ, fθ and a linear map `θ such that

z(0) = ζθ(t0, x0), z(t) = z(0) +

∫ t

0
fθ(z(s))dX (s),

and the output is either `θ(z(T )) or `θ(z(t)).

ζθ and fθ are arbitrary neural networks (feed-
forward, . . . ), and z is hidden state. Directly
analogous to an RNN “zn+1 = fθ(zn, xn)”.

x

t1t2 t3 · · · tn

x1x2 x3
xn

X

z
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Advantages

• Using a continuous-time theory pushes the problem of messy
data into the interpolation, which is better suited for handling
it.
• The equation z(t) = z(0) +

∫ t
0 fθ(z(s))dXds ds may be

interpreted as a (neural) ODE, so:
• We can solve it using existing software.
• The adjoint method may be applied, even over observations.

• Neural CDEs demonstrate state-of-the-art performance.

• Drawing on the existing theory of CDEs gives strong
theoretical guarantees. For example, neural CDEs are
universal approximators.
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Results - Character Trajectories

Model
Test Accuracy

Memory
usage

(mean ± std, computed across five runs)

30% dropped 50% dropped 70% dropped

GRU-ODE 92.6% ± 1.6% 86.7% ± 3.9% 89.9% ± 3.7% 1.5
GRU-∆t 93.6% ± 2.0% 91.3% ± 2.1% 90.4% ± 0.8% 15.8
GRU-D 94.2% ± 2.1% 90.2% ± 4.8% 91.9% ± 1.7% 17.0
ODE-RNN 95.4% ± 0.6% 96.0% ± 0.3% 95.3% ± 0.6% 14.8

Neural CDE (ours) 98.7% ± 0.8% 98.8% ± 0.2% 98.6% ± 0.4% 1.3
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Gotchas

z(0) = ζθ(t0, x0), z(t) = z(0)+

∫ t

0
fθ(z(s))dX (s), y ≈ `θ(z(T ))

• ζθ is a function of the initial point for translation sensitivity.
• Can be a function of any static features as well.

• Include time as a channel in X . (Recall X (ti ) = (xi , ti ).)

• fθ should have a final tanh nonlinearity.
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Discussion

Comparison to control theory problems (speaking very broadly):

• Control theory: System f is fixed; try to find optimal X
producing a desired response z .

• (Neural) CDEs: Input X is fixed; try to find optimal fθ
producing a desired response z .

Exciting future applications: can train Neural SDEs as a GAN,
using a Neural CDE as the discriminator! (Kidger et al. 2020)
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Summary

• New tool for time series, uniting the well-understood
mathematics of CDEs with the well-understood machine
learning of Neural ODEs.

• Acts on messy (irregularly sampled, partially observed,
variable length) time series.

• Memory efficient to train.

• Strong theoretical connections.

• Demonstrates state-of-the-art performance.

• Straightforward to implement with existing tools.
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Links

https://arxiv.org/abs/2005.08926

https://github.com/patrick-kidger/NeuralCDE

https://youtu.be/sbcIKugElZ4

Library: https://github.com/patrick-kidger/torchcde

These slides: https://kidger.site/links/NeurIPS-2020-Neural-CDEs
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