

Mathematical Institute

Neural Controlled Differential Equations for Irregular Time Series

Patrick Kidger, James Morrill, James Foster, Terry Lyons

Mathematical Institute University of Oxford

Neural Information Processing Systems 2020

Oxford **Mathematics**

• Neural ODEs are famously the continuous-time limit of ResNets:

$$
z_{n+1} = z_n + f_\theta(z_n) \quad \longrightarrow \quad \frac{\mathrm{d}z}{\mathrm{d}t} = f_\theta(z(t))
$$

- We introduce Neural Controlled Differential Equations as the continuous-time limit of RNNS.
- Operate on messy time series; memory efficient; state-of-the-art performance; easy to implement.

Neural ODEs

(Chen at al. 2018)

Use an ODE

$$
z(t) = z(0) + \int_0^t f_\theta(z(s)) \, \mathrm{d} s \quad \text{ for } t \in [0, T]
$$

as a learnt component of a differentiable computation graph.

- The integral over $s \in [0, T]$ is introduced and then integrated over, and is just an internal detail of the model.
- But given some ordered data (x_0, \ldots, x_n) , we would like to align $s \in [0, T]$ with the ordering of the data.
- Problem: The solution to an ODE is determined by its initial condition.

Controlled Differential Equations

(Lyons 1998, Lyons et al. 2004)

Have the local dynamics depend upon some time-varying $X \colon [0, T] \to \mathbb{R}^V$. This gives

$$
z(t) = z(0) + \int_0^t f(z(s)) dX(s) \underbrace{\int_0^t f(z(s)) dX(s)}_{= \int_0^t f(z(s)) \frac{dX}{ds}(s) ds}
$$

which is a Riemann–Stieltjes integral, and " $f(z(s)) dX(s)$ " is a matrix-vector product.

Observe
$$
\mathbf{x} = ((t_0, x_0), \dots, (t_n, x_n))
$$
 with $t_i \in \mathbb{R}$ and $x_i \in \mathbb{R}^{\vee}$.
Let $X: [t_0, t_n] \to \mathbb{R}^{\vee+1}$ interpolate this data, so $X(t_i) = (x_i, t_i)$.

Learn functions ζ_{θ} , f_{θ} and a linear map ℓ_{θ} such that

$$
z(0)=\zeta_\theta(t_0,x_0),\quad z(t)=z(0)+\int_0^t f_\theta(z(s))\,\mathrm{d} X(s),
$$

and the output is either $\ell_{\theta}(z(T))$ or $\ell_{\theta}(z(t))$. z ш X ζ_{θ} and f_{θ} are arbitrary neural networks (feed x_1x_2 x_3 x x_n forward, \dots), and z is hidden state. Directly analogous to an RNN " $z_{n+1} = f_{\theta}(z_n, x_n)$ ". t_1t_2 t_3 ·

Oxford **Mathematics**

Advantages

- Using a continuous-time theory pushes the problem of messy data into the interpolation, which is better suited for handling it.
- The equation $z(t) = z(0) + \int_0^t f_\theta(z(s)) \frac{dX}{ds} ds$ may be interpreted as a (neural) ODE, so:
	- We can solve it using existing software.
	- The adjoint method may be applied, even over observations.
- Neural CDEs demonstrate state-of-the-art performance.
- Drawing on the existing theory of CDEs gives strong theoretical guarantees. For example, neural CDEs are universal approximators.

Gotchas

$$
z(0) = \zeta_{\theta}(t_0,x_0), \quad z(t) = z(0) + \int_0^t f_{\theta}(z(s)) \,dX(s), \quad y \approx \ell_{\theta}(z(\mathcal{T}))
$$

• ζ_{θ} is a function of the initial point for translation sensitivity.

• Can be a function of any static features as well.

- Include time as a channel in X. (Recall $X(t_i) = (x_i, t_i)$.)
- f_{θ} should have a final tanh nonlinearity.

Comparison to control theory problems (speaking very broadly):

- Control theory: System f is fixed; try to find optimal X producing a desired response z.
- (Neural) CDEs: Input X is fixed; try to find optimal f_{θ} producing a desired response z.

Exciting future applications: can train Neural SDEs as a GAN, using a Neural CDE as the discriminator! (Kidger et al. 2020)

- New tool for time series, uniting the well-understood mathematics of CDEs with the well-understood machine learning of Neural ODEs.
- Acts on messy (irregularly sampled, partially observed, variable length) time series.
- Memory efficient to train.
- Strong theoretical connections.
- Demonstrates state-of-the-art performance.
- Straightforward to implement with existing tools.

Links

Library: <https://github.com/patrick-kidger/torchcde>

These slides: <https://kidger.site/links/NeurIPS-2020-Neural-CDEs>

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, "Neural Ordinary Differential Equations", in Advances in Neural Information Processing Systems 31, pp. 6571–6583, Curran Associates, Inc., 2018

T. Lyons, *Differential equations driven by rough signals*. Revista Matemática Iberoamericana, 14(2) pp. 215–310, 1998

T. Lyons, M. Caruana, and T. Levy, Differential equations driven by rough paths. Springer, 2004. École d'Été de Probabilités de Saint-Flour XXXIV - 2004

P. Kidger, J. Foster, X. Li, H. Oberhauser, T. Lyons, "Neural SDEs Made Easy: SDEs are Infinite-Dimensional GANs", OpenReview, 2020.