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Summary

Mathematical
Institute

® Neural ODEs are famously the continuous-time limit of
ResNets:

dz
Zntl1 = Zn + 7(9(Zn) — a = fg(Z(t))

® We introduce Neural Controlled Differential Equations as the
continuous-time limit of RNNS.

® QOperate on messy time series; memory efficient;
state-of-the-art performance; easy to implement.
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Neural ODEs

(Chen at al. 2018)

Mathematical
Institute

Use an ODE
z(t) = z(0) +/O fo(z(s))ds for t € [0, T]

as a learnt component of a differentiable computation graph.

® The integral over s € [0, T] is introduced and then integrated
over, and is just an internal detail of the model.

® But given some ordered data (xo, ..., xn), we would like to
align s € [0, T] with the ordering of the data.

® Problem: The solution to an ODE is determined by its initial
condition.
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Controlled Differential Equations
(Lyons 1998, Lyons et al. 2004)

Mathematical
Institute

Have the local dynamics depend upon some time-varying
X: [0, T] — RY. This gives

/f )) dX(s /f X(s)
:fof((

z s))E(s) ds

which is a Riemann—Stieltjes integral, and “f(z(s))dX(s)" is a
matrix-vector product.
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Bringing them together: Neural CDEs

Mathematical
Institute

Observe x = ((to, x0), - - -, (tn, xn)) with t; € R and x; € RY.
Let X: [to, to] — RY*! interpolate this data, so X(t;) = (x;, t;).

Learn functions (y, fy and a linear map ¢y such that
t
z(0) = Cy(to, x0), z(t) = z(0) +/ fo(z(s)) dX(s),
0

and the output is either ¢y(z(T)) or £y(z(t)). e A TRz

f,' \H
. I W/ﬁ \
Cp and fy are arbitrary neural networks (feed- 4 e x
. . . X,

forward, ...), and z is hidden state. Directly X2 X3 n

analogous to an RNN “z,11 = fy(zn, xn)". tity tz3--- &y
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Advantages

Mathematical
Institute

Using a continuous-time theory pushes the problem of messy
data into the interpolation, which is better suited for handling
it.
The equation z(t) = z(0) + [; fo(2(s)) %X ds may be
interpreted as a (neural) ODE, so:

® We can solve it using existing software.

® The adjoint method may be applied, even over observations.
Neural CDEs demonstrate state-of-the-art performance.

Drawing on the existing theory of CDEs gives strong
theoretical guarantees. For example, neural CDEs are
universal approximators.
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Results - Character Trajectories

Mathematical
Institute

Test Accuracy

Model (mean =+ std, computed across five runs) Memory
usage
30% dropped 50% dropped 70% dropped
GRU-ODE 92.6% + 1.6% 86.7% + 3.9% 89.9% =+ 3.7% 15
GRU-At 93.6% £ 2.0%  91.3% £+ 2.1%  90.4% + 0.8% 15.8
GRU-D 94.2% + 2.1% 90.2% + 4.8% 91.9% + 1.7% 17.0
ODE-RNN 95.4% + 0.6% 96.0% + 0.3% 95.3% + 0.6% 14.8

Neural CDE (ours) 98.7% =+ 0.8% 98.8% + 0.2% 98.6% + 0.4% 1.3
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Gotchas

Mathematical
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2(0) = Go(to, x0), z(t) = 2(0)+/0 fo(2(s)) dX(s), vy ~ Lo(z(T))

® (y is a function of the initial point for translation sensitivity.
® Can be a function of any static features as well.

¢ Include time as a channel in X. (Recall X(¢t;) = (x;, t;).)

® fy should have a final tanh nonlinearity.
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Discussion

Mathematical
Institute

Comparison to control theory problems (speaking very broadly):

e Control theory: System f is fixed; try to find optimal X
producing a desired response z.

® (Neural) CDEs: Input X is fixed; try to find optimal fy
producing a desired response z.

Exciting future applications: can train Neural SDEs as a GAN,
using a Neural CDE as the discriminator! (Kidger et al. 2020)
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Summary

Mathematical
Institute

New tool for time series, uniting the well-understood
mathematics of CDEs with the well-understood machine
learning of Neural ODEs.

Acts on messy (irregularly sampled, partially observed,
variable length) time series.

Memory efficient to train.
Strong theoretical connections.
Demonstrates state-of-the-art performance.

Straightforward to implement with existing tools.

Oxford
Mathematics

NeurlPS 2020 Neural CDEs 10



Links
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% Hidden state z
; https://arxiv.org/abs/2005.08926
' o ™Y https://github.com/patrick-kidger/NeuralCDE
) - * _pwx https://youtu.be/sbcIKugElZ4
— f.; - Y Time
Library: https://github.com/patrick-kidger/torchcde
These slides: https://kidger.site/links/NeurIPS-2020-Neural-CDEs
11
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