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Programme

• Introduction + applications

• Neural ordinary differential equations

• Neural controlled differential equations

• Neural stochastic differential equations

• Numerical solutions to neural differential equations

• Software
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What is a neural differential equation anyway?

A differential equation with a neural network vector field.

Canonical example - neural ordinary differential equation:

y(0) = y0
dy
dt

(t) = fθ(t, y(t))

fθ : R× Rd → Rd is any standard network - for our purposes today, often
a feedforward network:

(Rico-Mart́ınez et al., Chem. Eng. Comm. 1992; Chen et al., NeurIPS
2018)
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What is a neural differential equation anyway?

Why might we want this hybrid?

• Relative to traditional differential equations: high-capacity
function approximation.

• Relative to deep learning: good priors on model space;
consistent + battle-tested theory of ‘what makes a good
model’.

Real answer: the entire rest of this talk.
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What is a neural differential equation anyway?

Classical example of a ‘neural’ differential equation: the SIR model.

d
dt

s(t)
i(t)
r(t)

 =

 −b s(t) i(t)
b s(t) i(t)− k i(t)

k i(t)


b and k are parameters learnt from data.
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What is a neural differential equation anyway?

Consider the residual network

yn+1 = yn + fθ(n, yn),

where fθ(n, · ) is the nth residual block.

If we solve
dy
dt

(t) = fθ(t, y(t))

with the explicit Euler method:

y tn+1 = y tn + ∆t fθ(tn, y tn).
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What is a neural differential equation anyway?

Similar story throughout much of the rest of deep learning:

1. Other numerical solvers → other deep architectures.

2. GRUs/LSTMs ↔ neural controlled differential equations;

3. StyleGAN2 ↔ neural stochastic differential equations;

4. Coupling layers ↔ reversible differential equation solvers;

5. . . . .
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Applications

• Physical (financial, . . . ) modelling, for which a differential
equation is explicitly desired.

• Time series applications: data may arrive irregularly sampled,
partially observed and so on.

• Generative modelling: continuous normalising flows; neural
SDEs.
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Physical (financial, biological, . . . ) modelling

Hamiltonian neural networks (Greydanus et al., NeurIPS 2019)

dq
dt

=
∂Hθ

∂p

dp
dt

= −∂Hθ

∂q
+ gθ(q)u

Parameterise Hθ as a neural network.

Can also include control terms (Zhong et al., ICLR 2020).
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Physical (financial, biological, . . . ) modelling

“Universal” differential equations: combine existing knowledge
with neural network correction. (Rackauckas et al., arXiv 2020)

dy
dt

(t) = known part + neural network

• c.f. classical data-driven system identification.

• Nice application: closure modelling, e.g. RANS; climate
models.
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Physical (financial, biological, . . . ) modelling

Many details still not discussed:

• How to train combined mechanistic/neural vector fields;

• Augmentation (i.e. Markov property);

• Choice of vector field and non-autonomy;

• Universal approximation (i.e. density in some function space).
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Continuous normalising flows

Problem: want to model some unknown probability density π over some
state space E .

Let ν be some ‘nice’ distibution e.g. a multivariate
Gaussian. Then let:

y(0) ∼ ν dy
dt

(t) = fθ(t, y(t))

Then y(1) will follow some distribution.
Let T : y(0)→ y(1) then y(1) ∼ T#ν.

Pick θ such that T#ν ≈ π.
Solving from t = 0 to t = 1 allows for sampling.

These are continuous normalising flows. (Grathwohl et al., ICLR 2019)
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Continuous normalising flows

(Yang et al., arXiv 2019)
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Continuous normalising flows

Many details still not discussed:

• Training (Fokker–Planck + maximum likelihood);

• Hutchinson’s trace estimator;

• Choice of vector field;

• Connections to optimal transport, SDEs, . . .

Neural Differential Equations Patrick Kidger 14



Neural controlled differential equations

Consider the (neural) ODE

y(t) = y(0) +

∫ t

0
fθ(y(s)) ds for t ∈ [0,T ].

• This takes a single input: the initial condition.

• What if we observe some ordered data (x0, . . . , xn)?
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Neural controlled differential equations

Have the local dynamics of the system depend upon some time-varying
X : [0,T ]→ Rv :

y(t) = y(0) +

∫ t

0

f (y(s)) dX (s)

∫ t

0

f (y(s)) dX (s)︸ ︷︷ ︸
=
∫ t

0
f (y(s)) dX

ds (s) ds

for t ∈ [0,T ].

which is a Riemann–Stieltjes integral, and “f (y(s)) dX (s)” is a
matrix-vector product.

Fundamentally, a CDE is an operator X 7→ y .
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Neural controlled differential equations

Let X : [0,T ]→ Rv be some observed data. (e.g. an interpolation
of a time series – we’ll come back to this.)

Learn neural networks ζθ, fθ, `θ such that

y(0) = ζθ(X (0)), y(t) = y(0) +

∫ t

0
fθ(y(s)) dX (s),

and the output is either `θ(y(T )) or `θ(y(t))
(K. et al., NeurIPS 2020).

Analogous to an RNN “yn+1 = fθ(yn, xn)”.

x

t1t2 t3 · · · tn

x1x2 x3
xn

X

y
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Neural controlled differential equations

Examples: the time series x = ((t1, x1), . . . , (tn, xn)) could be:

• The position of a pen moved over paper, to draw a character;

• Or patient hospital records: e.g. heart rate, lab results, . . . ;

• Spoken audio;

• Weather data, e.g. temperature and pressure as they change
over time;

• Physics: e.g. the movement of a double pendulum.
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Neural controlled differential equations

Comparison to control theory problems (speaking very broadly):

• Control theory: System f is fixed; try to find optimal X
producing a desired response y .

• (Neural) CDEs: Input X is fixed; try to find optimal fθ
producing a desired response y .
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Neural controlled differential equations

Many details still not discussed:

• Good choices of fθ;

• Why fθ(y(s)) dX (s) and not fθ(y(s),X (s)) ds;
• Connections to rough path theory:

• Log-ODE method: can be applied to very long (17k) time
series (Morrill et al., ICML 2021a);

• Strong theoretical guarantees e.g. neural CDEs are universal
approximators;

• Choice of interpolation scheme, in particular for ‘online’
problems (Morrill et al., arXiv 2021b);

• Further connections to + advantages over RNNs.
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(Non neural) stochastic differential equations

Consider
dX t = µ(t,X t) dt + σ(t,X t) dWt ,

with X ,W , µ vector-valued, and σ matrix-valued.

• The strong solution to an SDE is a map (X 0,W ) 7→ X .

• An SDE solver can (approximately) sample from an SDE.

• But it’s tricky to write down a notion of probability density.
(Over path space – we’re looking at X , not XT .)

• Trained by matching statistics:

EXFi (X ) ≈ EdataFi (data)

for all i ∈ {1, . . . , n} (e.g. with Fi called payoff functions).
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Neural stochastic differential equations

Recap on GANs:

Given noise A(ω) ∈ Rd1 , target B(ω) ∈ Rd2 , a generative model is a

neural network gθ : Rd1 → Rd2 s.t. gθ(A)
d
≈ B.

(e.g. multivariate normal sample 7→ picture of a cat)

Can obtain samples as gθ(A(ω)). But in general no tractable density
=⇒ can’t train via maximum likelihood.

Train θ to minimise

W (gθ(A),B) ≈ sup
φ

∣∣∣∣∣∣ 1

N

N∑
i=1

Fφ(gθ(A(ωi ))− 1

M

M∑
j=1

Fφ(B(ω̃j))

∣∣∣∣∣∣ .
i.e. match statistics: EAF (gθ(A))≈EBF (B) for all ‘discriminators’ F .
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Neural stochastic differential equations

Target: Want to model B, a random variable on path space.
Noise: Brownian motion W , initial noise V (e.g. with law N (0, I )).
Let ζθ, µθ, σθ, `θ be neural networks.

Then we seek to learn an SDE of the form

X 0 = ζθ(V ), dX t = µθ(t,X t) dt+σθ(t,X t) dWt , Yt = `θ(X t),

such that Y
d
≈ B.

This equation has a certain minimal amount of structure: Y is the
output; X is hidden state; V is initial noise.
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Neural stochastic differential equations

Outputs of the model are continuous-time paths Y . We need a
discriminator Fφ that accepts such objects as inputs. There is a
convenient choice. . .

H0 = ξφ(Y0), dHt = fφ(t,Ht) dt + gφ(t,Ht) dYt .

Then we define Fφ(Y ) = mφ · HT .
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Neural stochastic differential equations

Summary of equations:

H0 = ξφ(Y0)

X 0 = ζθ(V )

V ∼ N (0, I ) Wt = Brownian motion

dX t = µθ(t, X t ) dt + σθ(t, X t ) dWt

dHt = fφ(t,Ht ) dt + gφ(t,Ht ) dYt mφ · HT

Yt = `θ(X t )

Noise

Generator

Discriminator

Initial Hidden state Output

• Neural SDE / CDE form a generator/discriminator pair.

• Arbitrary drift and diffusions are admissible.

• In the infinite data limit any SDE may be learnt.

• Same fundamental techniques as a ‘non-neural’ SDE.
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Neural stochastic differential equations
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Neural stochastic differential equations

Google/Alphabet Stocks:

Metric Neural SDE CTFP Latent ODE

Classification 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Prediction 0.144 ± 0.045 0.725 ± 0.233 46.2 ± 12.3
MMD 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8

Beijing Air Quality:

Metric Neural SDE CTFP Latent ODE

Classification 0.589 ± 0.051 0.764 ± 0.064 0.392 ± 0.011
Prediction 0.395 ± 0.056 0.810 ± 0.083 0.456 ± 0.095
MMD 0.000160 ± 0.000029 0.00198 ± 0.00001 0.000242 ± 0.000002

SGD dynamics:

Metric Neural SDE CTFP Latent ODE

Classification 0.507 ± 0.019 0.676 ± 0.014 0.0112 ± 0.0025
Prediction 0.00843 ± 0.00759 0.0808 ± 0.0514 0.127 ± 0.152
MMD 5.28 ± 1.27 12.0 ± 0.5 23.2 ± 11.8

Neural Differential Equations Patrick Kidger 27



Neural stochastic differential equations

Many details still not discussed –

• Vector field (neural network) structure.
• Min-max training to find a Nash equilibria.

• Optimiser: Adadelta vs SGD vs Adam vs . . .
• Stochastic weight averaging
• . . .

• Lipschitz regularisation of the discriminator.

• Careful clipping + LipSwish activations.
• Whole-discriminator gradient penalty.

• Alternate training strategies: KL divergence; MMD.
• Applications (in particular there’s been quite a lot of finance papers).
• Connections to continuous normalising flows, . . .

(K. et al., ICML 2021a; K. et al., NeurIPS 2021b)
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Numerical solutions to neural differential equation

• Little structure =⇒ typically use very general solvers.

• Euler (probably not)
• RK4 (much better)
• Dormand–Prince (better still)
• Implicit solvers?

• Somewhat unusually: we get to control the differential equation we’re

solving!

• Can use neural network architectures that encourage dynamics
that are easier to solve.

• Can add anti-stiffness regularisers, e.g. penalise ∇fθ to be
small. (Finlay et al., ICML 2020; Kelly et al., NeurIPS 2020)
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Numerical solutions to neural differential equation

• Can learn the solver too! Learn numerical solvers that do a particularly
good job solving a neural differential equation. These are called
hypersolvers. (Poli et al., NeurIPS 2020)

• Backpropagation through a (neural) differential equation:

• Discretise-then-optimise;
• Optimise-then-discretise;
• Checkpointing (Gholami et al., arXiv 2019);
• Interpolating adjoints;
• Quadrature;
• Not-an-ODE; adjoint seminorms (K. et al., ICML 2021c);
• (Algebraically) reversible solvers (Zhuang et al., ICLR 2020;

K. et al., NeurIPS 2021b);
• Implicit function theorem (through an equilibrium).
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Software

We’ve got pretty good software for solving neural differential
equations. (Or backpropagating through any diff. eq. really.)

• PyTorch: torchdiffeq, torchcde, torchsde;

• Julia: DifferentialEquations.jl;

• JAX: watch this space . . .

Part of the PyTorch/Julia/JAX ecosystems: composable,
autodifferentiable, GPU-capable.
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Final notes

• NDEs have applications to traditional mathematical modelling
(SIR; Hamiltonian Neural Networks; Universal Differential
Equations; Neural SDEs),. . .

• . . . and to modern deep learning (Continuous Normalising
Flows; Neural CDEs; Neural SDEs).

• A version of these slides are available on my website.
(https://kidger.site)

• Feel free to send me an email / poke me on Twitter
(@PatrickKidger) if you have any questions later.

• (Message me for a copy of my thesis – On Neural Differential
Equations.)

• Any questions now?
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