
Neural Differential Equations
in Machine Learning

Patrick Kidger

Mathematical Institute
University of Oxford

Random Systems CDT, October 2021

Programme

• Introduction + applications

• Neural ordinary differential equations

• Neural controlled differential equations

• Neural stochastic differential equations

• Numerical solutions to neural differential equations

• Software

Neural Differential Equations Patrick Kidger 2

What is a neural differential equation anyway?

A differential equation with a neural network vector field.

Canonical example - neural ordinary differential equation:

y(0) = y0
dy
dt

(t) = fθ(t, y(t))

fθ : R× Rd → Rd is any standard network - for our purposes today, often
a feedforward network:

(Rico-Mart́ınez et al., Chem. Eng. Comm. 1992; Chen et al., NeurIPS
2018)

Neural Differential Equations Patrick Kidger 3

What is a neural differential equation anyway?

Why might we want this hybrid?

• Relative to traditional differential equations: high-capacity
function approximation.

• Relative to deep learning: good priors on model space;
consistent + battle-tested theory of ‘what makes a good
model’.

Real answer: the entire rest of this talk.

Neural Differential Equations Patrick Kidger 4

What is a neural differential equation anyway?

Classical example of a ‘neural’ differential equation: the SIR model.

d
dt

s(t)
i(t)
r(t)

 =

 −b s(t) i(t)
b s(t) i(t)− k i(t)

k i(t)

b and k are parameters learnt from data.

Neural Differential Equations Patrick Kidger 5

What is a neural differential equation anyway?

Consider the residual network

yn+1 = yn + fθ(n, yn),

where fθ(n, ·) is the nth residual block.

If we solve
dy
dt

(t) = fθ(t, y(t))

with the explicit Euler method:

y tn+1 = y tn + ∆t fθ(tn, y tn).

Neural Differential Equations Patrick Kidger 6

What is a neural differential equation anyway?

Similar story throughout much of the rest of deep learning:

1. Other numerical solvers → other deep architectures.

2. GRUs/LSTMs ↔ neural controlled differential equations;

3. StyleGAN2 ↔ neural stochastic differential equations;

4. Coupling layers ↔ reversible differential equation solvers;

5.

Neural Differential Equations Patrick Kidger 7

Applications

• Physical (financial, . . .) modelling, for which a differential
equation is explicitly desired.

• Time series applications: data may arrive irregularly sampled,
partially observed and so on.

• Generative modelling: continuous normalising flows; neural
SDEs.

Neural Differential Equations Patrick Kidger 8

Physical (financial, biological, . . .) modelling

Hamiltonian neural networks (Greydanus et al., NeurIPS 2019)

dq
dt

=
∂Hθ

∂p

dp
dt

= −∂Hθ

∂q
+ gθ(q)u

Parameterise Hθ as a neural network.

Can also include control terms (Zhong et al., ICLR 2020).

Neural Differential Equations Patrick Kidger 9

Physical (financial, biological, . . .) modelling

“Universal” differential equations: combine existing knowledge
with neural network correction. (Rackauckas et al., arXiv 2020)

dy
dt

(t) = known part + neural network

• c.f. classical data-driven system identification.

• Nice application: closure modelling, e.g. RANS; climate
models.

Neural Differential Equations Patrick Kidger 10

Physical (financial, biological, . . .) modelling

Many details still not discussed:

• How to train combined mechanistic/neural vector fields;

• Augmentation (i.e. Markov property);

• Choice of vector field and non-autonomy;

• Universal approximation (i.e. density in some function space).

Neural Differential Equations Patrick Kidger 11

Continuous normalising flows

Problem: want to model some unknown probability density π over some
state space E .

Let ν be some ‘nice’ distibution e.g. a multivariate
Gaussian. Then let:

y(0) ∼ ν dy
dt

(t) = fθ(t, y(t))

Then y(1) will follow some distribution.
Let T : y(0)→ y(1) then y(1) ∼ T#ν.

Pick θ such that T#ν ≈ π.
Solving from t = 0 to t = 1 allows for sampling.

These are continuous normalising flows. (Grathwohl et al., ICLR 2019)

Neural Differential Equations Patrick Kidger 12

Continuous normalising flows

(Yang et al., arXiv 2019)

Neural Differential Equations Patrick Kidger 13

Continuous normalising flows

Many details still not discussed:

• Training (Fokker–Planck + maximum likelihood);

• Hutchinson’s trace estimator;

• Choice of vector field;

• Connections to optimal transport, SDEs, . . .

Neural Differential Equations Patrick Kidger 14

Neural controlled differential equations

Consider the (neural) ODE

y(t) = y(0) +

∫ t

0
fθ(y(s)) ds for t ∈ [0,T].

• This takes a single input: the initial condition.

• What if we observe some ordered data (x0, . . . , xn)?

Neural Differential Equations Patrick Kidger 15

Neural controlled differential equations

Have the local dynamics of the system depend upon some time-varying
X : [0,T]→ Rv :

y(t) = y(0) +

∫ t

0

f (y(s)) dX (s)

∫ t

0

f (y(s)) dX (s)︸ ︷︷ ︸
=
∫ t

0
f (y(s)) dX

ds (s) ds

for t ∈ [0,T].

which is a Riemann–Stieltjes integral, and “f (y(s)) dX (s)” is a
matrix-vector product.

Fundamentally, a CDE is an operator X 7→ y .

Neural Differential Equations Patrick Kidger 16

Neural controlled differential equations

Let X : [0,T]→ Rv be some observed data. (e.g. an interpolation
of a time series – we’ll come back to this.)

Learn neural networks ζθ, fθ, `θ such that

y(0) = ζθ(X (0)), y(t) = y(0) +

∫ t

0
fθ(y(s)) dX (s),

and the output is either `θ(y(T)) or `θ(y(t))
(K. et al., NeurIPS 2020).

Analogous to an RNN “yn+1 = fθ(yn, xn)”.

x

t1t2 t3 · · · tn

x1x2 x3
xn

X

y

Neural Differential Equations Patrick Kidger 17

Neural controlled differential equations

Examples: the time series x = ((t1, x1), . . . , (tn, xn)) could be:

• The position of a pen moved over paper, to draw a character;

• Or patient hospital records: e.g. heart rate, lab results, . . . ;

• Spoken audio;

• Weather data, e.g. temperature and pressure as they change
over time;

• Physics: e.g. the movement of a double pendulum.

Neural Differential Equations Patrick Kidger 18

Neural controlled differential equations

Comparison to control theory problems (speaking very broadly):

• Control theory: System f is fixed; try to find optimal X
producing a desired response y .

• (Neural) CDEs: Input X is fixed; try to find optimal fθ
producing a desired response y .

Neural Differential Equations Patrick Kidger 19

Neural controlled differential equations

Many details still not discussed:

• Good choices of fθ;

• Why fθ(y(s)) dX (s) and not fθ(y(s),X (s)) ds;
• Connections to rough path theory:

• Log-ODE method: can be applied to very long (17k) time
series (Morrill et al., ICML 2021a);

• Strong theoretical guarantees e.g. neural CDEs are universal
approximators;

• Choice of interpolation scheme, in particular for ‘online’
problems (Morrill et al., arXiv 2021b);

• Further connections to + advantages over RNNs.

Neural Differential Equations Patrick Kidger 20

(Non neural) stochastic differential equations

Consider
dX t = µ(t,X t) dt + σ(t,X t) dWt ,

with X ,W , µ vector-valued, and σ matrix-valued.

• The strong solution to an SDE is a map (X 0,W) 7→ X .

• An SDE solver can (approximately) sample from an SDE.

• But it’s tricky to write down a notion of probability density.
(Over path space – we’re looking at X , not XT .)

• Trained by matching statistics:

EXFi (X) ≈ EdataFi (data)

for all i ∈ {1, . . . , n} (e.g. with Fi called payoff functions).

Neural Differential Equations Patrick Kidger 21

Neural stochastic differential equations

Recap on GANs:

Given noise A(ω) ∈ Rd1 , target B(ω) ∈ Rd2 , a generative model is a

neural network gθ : Rd1 → Rd2 s.t. gθ(A)
d
≈ B.

(e.g. multivariate normal sample 7→ picture of a cat)

Can obtain samples as gθ(A(ω)). But in general no tractable density
=⇒ can’t train via maximum likelihood.

Train θ to minimise

W (gθ(A),B) ≈ sup
φ

∣∣∣∣∣∣ 1

N

N∑
i=1

Fφ(gθ(A(ωi))− 1

M

M∑
j=1

Fφ(B(ω̃j))

∣∣∣∣∣∣ .
i.e. match statistics: EAF (gθ(A))≈EBF (B) for all ‘discriminators’ F .

Neural Differential Equations Patrick Kidger 22

Neural stochastic differential equations

Target: Want to model B, a random variable on path space.
Noise: Brownian motion W , initial noise V (e.g. with law N (0, I)).
Let ζθ, µθ, σθ, `θ be neural networks.

Then we seek to learn an SDE of the form

X 0 = ζθ(V), dX t = µθ(t,X t) dt+σθ(t,X t) dWt , Yt = `θ(X t),

such that Y
d
≈ B.

This equation has a certain minimal amount of structure: Y is the
output; X is hidden state; V is initial noise.

Neural Differential Equations Patrick Kidger 23

Neural stochastic differential equations

Outputs of the model are continuous-time paths Y . We need a
discriminator Fφ that accepts such objects as inputs. There is a
convenient choice. . .

H0 = ξφ(Y0), dHt = fφ(t,Ht) dt + gφ(t,Ht) dYt .

Then we define Fφ(Y) = mφ · HT .

Neural Differential Equations Patrick Kidger 24

Neural stochastic differential equations

Summary of equations:

H0 = ξφ(Y0)

X 0 = ζθ(V)

V ∼ N (0, I) Wt = Brownian motion

dX t = µθ(t, X t) dt + σθ(t, X t) dWt

dHt = fφ(t,Ht) dt + gφ(t,Ht) dYt mφ · HT

Yt = `θ(X t)

Noise

Generator

Discriminator

Initial Hidden state Output

• Neural SDE / CDE form a generator/discriminator pair.

• Arbitrary drift and diffusions are admissible.

• In the infinite data limit any SDE may be learnt.

• Same fundamental techniques as a ‘non-neural’ SDE.

Neural Differential Equations Patrick Kidger 25

Neural stochastic differential equations

Neural Differential Equations Patrick Kidger 26

Neural stochastic differential equations

Google/Alphabet Stocks:

Metric Neural SDE CTFP Latent ODE

Classification 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Prediction 0.144 ± 0.045 0.725 ± 0.233 46.2 ± 12.3
MMD 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8

Beijing Air Quality:

Metric Neural SDE CTFP Latent ODE

Classification 0.589 ± 0.051 0.764 ± 0.064 0.392 ± 0.011
Prediction 0.395 ± 0.056 0.810 ± 0.083 0.456 ± 0.095
MMD 0.000160 ± 0.000029 0.00198 ± 0.00001 0.000242 ± 0.000002

SGD dynamics:

Metric Neural SDE CTFP Latent ODE

Classification 0.507 ± 0.019 0.676 ± 0.014 0.0112 ± 0.0025
Prediction 0.00843 ± 0.00759 0.0808 ± 0.0514 0.127 ± 0.152
MMD 5.28 ± 1.27 12.0 ± 0.5 23.2 ± 11.8

Neural Differential Equations Patrick Kidger 27

Neural stochastic differential equations

Many details still not discussed –

• Vector field (neural network) structure.
• Min-max training to find a Nash equilibria.

• Optimiser: Adadelta vs SGD vs Adam vs . . .
• Stochastic weight averaging
• . . .

• Lipschitz regularisation of the discriminator.

• Careful clipping + LipSwish activations.
• Whole-discriminator gradient penalty.

• Alternate training strategies: KL divergence; MMD.
• Applications (in particular there’s been quite a lot of finance papers).
• Connections to continuous normalising flows, . . .

(K. et al., ICML 2021a; K. et al., NeurIPS 2021b)

Neural Differential Equations Patrick Kidger 28

Numerical solutions to neural differential equation

• Little structure =⇒ typically use very general solvers.

• Euler (probably not)
• RK4 (much better)
• Dormand–Prince (better still)
• Implicit solvers?

• Somewhat unusually: we get to control the differential equation we’re

solving!

• Can use neural network architectures that encourage dynamics
that are easier to solve.

• Can add anti-stiffness regularisers, e.g. penalise ∇fθ to be
small. (Finlay et al., ICML 2020; Kelly et al., NeurIPS 2020)

Neural Differential Equations Patrick Kidger 29

Numerical solutions to neural differential equation

• Can learn the solver too! Learn numerical solvers that do a particularly
good job solving a neural differential equation. These are called
hypersolvers. (Poli et al., NeurIPS 2020)

• Backpropagation through a (neural) differential equation:

• Discretise-then-optimise;
• Optimise-then-discretise;
• Checkpointing (Gholami et al., arXiv 2019);
• Interpolating adjoints;
• Quadrature;
• Not-an-ODE; adjoint seminorms (K. et al., ICML 2021c);
• (Algebraically) reversible solvers (Zhuang et al., ICLR 2020;

K. et al., NeurIPS 2021b);
• Implicit function theorem (through an equilibrium).

Neural Differential Equations Patrick Kidger 30

Software

We’ve got pretty good software for solving neural differential
equations. (Or backpropagating through any diff. eq. really.)

• PyTorch: torchdiffeq, torchcde, torchsde;

• Julia: DifferentialEquations.jl;

• JAX: watch this space . . .

Part of the PyTorch/Julia/JAX ecosystems: composable,
autodifferentiable, GPU-capable.

Neural Differential Equations Patrick Kidger 31

References

R. Rico-Mart́ınez, K. Krischer, I. G. Kevrekidis, M. C. Kube, and J. L. Hudson,
“Discrete-vs. continuous-time nonlinear signal processing of Cu electrodissolution
data”, Chemical Engineering Communications, 1992

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural Ordinary
Differential Equations”, Advances in Neural Information Processing Systems, 2018

S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian Neural Networks”, Advances
in Neural Information Processing Systems, 2019

C. Rackaucaks, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner,
A. Ramadhan, and A. Edelman, “Universal Differential Equations for Scientific
Machine Learning”, arXiv:2001.04385, 2020

Neural Differential Equations Patrick Kidger 32

References

Y. D. Zhong, B. Dey, and A, Chakraborty, “Symplectic ODE-Net: Learning
Hamiltonian Dynamics with Control”, International Conference on Learning
Representations, 2020

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud,
“FFJORD: Free-form continuous dynamics for scalabe reversible generative models”,
International Conference on Learning Representations, 2019
G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan,, “PointFlow:
3D Point Cloud Generation with Continuous Normalizing Flows”, arXiv:1906.12320,
2019

P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural Controlled Differential Equations
for Irregular Time Series”, Advances in Neural Information Processing Systems, 2020

J. Morrill, C. Salvi, P. Kidger, J. Foster, and T. Lyons, “Neural Rough Differential
Equations for Long Time Series”, International Conference on Machine Learning,
2021a

Neural Differential Equations Patrick Kidger 33

References

J. Morrill, P. Kidger, L. Yang, and T. Lyons, “Neural Controlled Differential Equations
for Online Prediction Tasks”, arXiv:2106.11028, 2021b

P. Kidger, J. Foster, X. Li, H. Oberhauser, and T. Lyons, “Neural SDEs as
Infinite-Dimensional GANs”, International Conference on Machine Learning, 2021a

P. Kidger, J. Foster, X. Li, and T. Lyons, “Efficient and Accurate Gradients for Neural
SDEs”, Neural Information Processing Systems, 2021b

C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman, “How to train your
neural ODE: the world of Jacobian and kinetic regularization”, International
Conference on Machine Learning, 2020

J. Kelly, J. Bettencourt, M. J. Johnson, and D. Duvenaud, “Learning Differential
Equations that are Easy to Solve”, Advances in Neural Information Processing
Systems, 2020

M Poli, S. Masssaroli, A. Yamashita, H. Asama, and J. Park, “Hypersolvers: Toward
Fast Continuous-Depth Models”, Advances in Neural Information Processing Systems,
2020

Neural Differential Equations Patrick Kidger 34

References

A. Gholami, K. Keutzer, and G. Biros, “ANODE: Unconditionally Accurate
Memory-Efficient Gradients for Neural ODEs”, arXiv:1902.10298, 2019

P. Kidger, R. T. Q. Chen, T. Lyons, ““Hey, that’s not an ODE”: Faster ODE Adjoints
via Seminorms”, International Conference on Machine Learning, 2021c

J. Zhuang, N. C. Dvornek, S. Tatikonda, and J. S. Duncan, “MALI: A memory
efficient and reverse accurate integrator for Neural ODEs”, International Conference
on Learning Representations, 2021

Neural Differential Equations Patrick Kidger 35

Final notes

• NDEs have applications to traditional mathematical modelling
(SIR; Hamiltonian Neural Networks; Universal Differential
Equations; Neural SDEs),. . .

• . . . and to modern deep learning (Continuous Normalising
Flows; Neural CDEs; Neural SDEs).

• A version of these slides are available on my website.
(https://kidger.site)

• Feel free to send me an email / poke me on Twitter
(@PatrickKidger) if you have any questions later.

• (Message me for a copy of my thesis – On Neural Differential
Equations.)

• Any questions now?

Neural Differential Equations Patrick Kidger 36

https://kidger.site

